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THE RECEPTIVITY OF BOUNDARY LAYERS ON BLUNT BODIES
TO OSCILLATIONS IN THE FREE STREAM

By

Chester E. Grosch¥

INTRODUCTION

The prediction of the position of transition on a body is one of the
most. difficult problems in fluid dynamics. Linear stability theory with the
"eM" criterion (see Mack, 1977, for an extended discussion) is probably
the most widely used method of predicting transition. The major weakness of
this method is that it employes a relative measure of flow instability; the
growth of some measure of the disturbance size, whether amplitude, energy,

or whatever, relative to an unknown initial size of the disturbance.

It is clear, as pointed out by Mack (1977), that the position of tran
sition must depend on the absolute size of the disturbance, and thus on the
initial size of the disturbance as well as the growth rate of the unstable
disturbance. If there were no disturbance at all, that is the initial size
were zero, the stability or instability of the flow would be irrelevant.

The flow would remain laminar, and transition would not occur anywhere on
the body unless, of course, the flow separated. On the other hand, if the
initial disturbance were very large, say of the order of the mean flow

speed, then transition would, presumably, occur very near the front of the

body, perhaps in the immediate vicinity of the stagnation point or line.

A rough estimate of the magnitude of the initial amplitude of the
Tollmien-Schlichting waves at the beginning of the region of instability can
be made if it is assumed that the "e™" criterion is an approximately valid
transition method and if one accepts the estimate of Klebanoff, Tidstron,
and Sargent (1962) that, at the beginning of transition, the rms value of

the perturbation velocity is about 1.5% of the free stream speed. Since the

*Professor, Department of Oceanography, Old Dominion University, Norfolk,
Virginia 23508.



initial proposal of the "e™ criterion by Smith (1956) and Van Ingen

(1956) , extensive studies of transition data have shown that n varies from
about 2.5 to 10.0, depending on the test facility. Taking the disturbance
amplitude at transition to be 0.015 of the free stream speed, and n to
vary from 2.5 to 10.0, it follows that the amplitude of the disturbance at
the beginning of the region of flow instability is in the range 10-3 to 10-®
of the free stream speed. This suggests that a very weak coupling of free
stream disturbances to Tollmien-Schlichting waves in the boundary layer may
be extremely important in the initiation of the transition process. If the
free stream disturbances have amplitudes of 0(e), even disturbances in the

boundary layer of 0(e2) may play a role in initiating transition.

In order to incorporate the influence of the flow enviromment in sta-
bility prediction methods, and thereby provide a rational basis for these
methods, it is necessary to be able to calculate the initial size of the
disburbance caused by external, i.e. free stream, disturbances. There are
four classes of free stream disturbances which may be responsible for the
generation of the Tollmien-Schlichting waves which lead to transition
(Obremski, Morkovin, and Landhal, 1969). They are: mean flow unsteadiness,
free stream vorticity, sound, and entropy fluctuations. If the fluid were
truly incompressible, only the unsteadiness of the mean flow and free stream
vorticity could exist and initiate the transition process. In reality,
sound waves are always present. Entropy fluctuations appear to occur only
at high supersonic speeds. 1In a recent study, Harvey and Bobbitt (1981)
have examined the anomolies between wind tunnel and flight transition mea-
surements. They state that the experimental results show"... the dominance
of free-stream disturbance level on the transition process from beginning to
end." Further, they conclude that there is a question of"... whether sound,
unsteadiness, or spectral peaks is the most influential on boundary layer

" Morkovin (1978) has argued that, in medium to low subsonic

receptivity,...
flows, sound waves can be modeled quite accurately by a time varying
oscillation superimposed upon a steady mean flow, provided that the
wavelength of the sound wave is much larger than the characteristic length
scale of the body. For a sound wave impinging on the nose of a body this
characteristic scale length would appear to be the radius of curvature of

the body at the forward stagnation point.



Recent studies, (Salwen, Kelly, and Grosch, 1980; Grosch and Salwen,
1980; Salwen and Grosch, 1981) have been addressed to the problem of calcu-
lating the amplitudes of the discrete and continuum eigenfunctions of the
linearized, parallel flow stability problem. The results of these studies
can be summarized as follows: first, the proper inner products for ortho-
gonality of these eigenfunctions were found; second, it was shown that the
set of discrete and continuum eigenfunctions for both the temporal and spa-
tial problems is complete; and third, a procedure for calculating the ampli-
tudes of the discrete and continuum eigenfunctions was found. 1In order to
calculate these amplitudes, the disturbance must be known, as a function of

time, on a plane perpendicular to the boundary.

In order for this procedure to be applied it is necessary for the dis-
turbance to be small so that linearization is valid; that the parallel flow
approximation be valid, at least approximately; and that the form of the
disturbance be known throughout the boundary layer and free stream at one
location on a two-dimensional body. Even if the disturbances are small,
this theory cannot be applied in the immediate vicinity of the leading edge
of a body because the flow in that region is not even approximately
parallel. A basic problem is to determine the flow within the boundary
layer caused by disturbances propagating and being advected by the mean flow

toward the front of a blunt body.

The response of the boundary layer on a body to oscillations in the
free stream has been the subject of a number of studies beginning in the
early 1950's. Some representative examples are the work of Moore (1951),
Lighthill (1954), Stuart (1955), Rott (1956), Lin (1956), Glauert (1956),
Carrier and Di Prima (1957), Gibson (1957), Watson (1959), Lam and Rott
(1960), Rott and Rosenzweig (1960), Sarma (1964;, Stuart (1966), and
Ackerberg and Phillips (1972). Riley (1975) and Schlichting (1979, Chapter
15) give comprehensive reviews of recent work in unsteady boundary layer
theory. None of these authors have considered the application of their

results to the boundary layer receptivity problem.

These studies have considered either the unsteady flow in the vicinity

of a stagnation point or on a flat plate. The flat plate problem presents
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great difficulties because of the singularity of the boundary layer equa-
tions at the leading edge of the plate. Carrier and Di Prima (1957) studied
this problem within the framework of a linearized, Oseen approximation, to
first order in the amplitude of the oscillation. They found that, far from
the leading edge of the plate, the time dependent part of the flow is a
Stokes shear wave. Ackerberg and Phillips (1972) studied the same problem
using asymptotic, again to first order in the amplitude of the oscillation,
and numerical techniques. They also found that, far downstream of the lead-
ing edge, the flow develops into a nearly Blasius steady flow and a Stokes
shear layer imbedded within the steady boundary layer. The most surprising,
and unexpected, result of Ackerberg and Phillips is that "... most flow
quantities approach their asymptotic values far downstream through damped

oscillations."

Grosch and Salwen have found a solution of the Navier-Stokes
equations for an incompressible stagnation point flow whose magnitude

oscillates in time about a constant, nonzero, value. (See Appen-

dix B.) The analytic solutions, to third order in the amplitude, obtained
using inner and outer expansions, are in complete agreement with the results
of numerical integrations. The mean flow is the steady stagnation point
flow plus second, and higher, order flows driven by the Reynolds stress of
the oscillatory componments. The oscillatory flow is that of the fundamental

and all of the higher harmonics of the fundamental.

The mean flow is, to lowest order, independent of the oscillating flow.
The structure of the oscillatory components of the flow depends on the fre-
quency of oscillation, not on the distance from the stagnation point. As
was expected, the oscillatory flow develops into a Stokes shear layer at
high frequencies. The results of Carrier and Di Prima and Ackerberg and
Phillips that the Stokes shear layer develops far downstream may be due to
the use of the boundary layer equations in a region in which they are

invalid.

In any case, the flat plate with zero thickness and a "sharp" leading
edge is a nonphysical model; all physical bodies have a blunt leading edge,
at least if a continuum approximation can be applied to the flow past the
body.




In this paper we examine one aspect of the boundary layer receptivity
problem; that of the flow induced in the boundary layer on the forward por-

tion of a blunt body by unsteadiness in the mean flow. As was mentioned
above, this is also an approximate solution for the disturbances generated
in the boundary layer by a long wavelength sound wave impinging normally on
the front of a body in steady motion. This work is an extemnsion of our
previous study of the flow in the neighborhood of a stagnation point (Grosch

and Salwen, Appendix B).
FORMULATION

Consider the flow past a blunt, two-dimensional body. The usual bound-

~

ary layer coordinates are used: x is the distance along the surface of the
body from the forward stagnation point and y is the distance from the body

along the normal to the body. A solution is to be found for x 2 0 of the

time-dependent, two-dimensional boundary layer equations

3 3

_}'*'—;:0’ (1)
8ax 9dy

d 3 3 2

_E.+ u ig_+ v ig = _H,+ U fg. + v E:E, (2)
ot 9x 9y 9t 9x 3y?

with the boundary conditions
u(x,0,t) = v(x,0,t) = 0, (3)

u(x,y,t) » Ulx,t) as y + =. (4)

_Here, (u,v) are the components of the velocity in the x and ¥y
directions, U(x,t) is the component of the potential flow which is tan~

gential to the body surface, and v 1is the kinematic viscosity. It will be




assumed that the potential flow is a temporally oscillating flow, super-

imposed on a steady mean flow; specifically it is assumed that,

U(x,t) = UHG/D)[1 + € cos wt], (5)

where U, is the magnitude of the mean potential flow,
£ 1is an appropriate length scale of the body,
€ 1is the dimensionless amplitude of the oscillating component,
and,
H 1is a dimensionless function, giving the variation along the body

of the tangential component of the potential flow.

It will be assumed that the body is symmetric and is at a zero angle of

attack, so that H is of the form

~ o ~ 20+l
H(x/2) = E 3, 41 (x/2) , (6)

n=0

with the {aj} dimensionless constants. Specific examples will be

considered below.
METHOD OF SOLUTION

Define dimensionless variables

£E=%/%, (7)
n = (a;Re)1/2(3/2) (8)
T = aont/z, (9)

and parameters, a Reynolds number

Re = U &/v (10)
o




and a Strouhal number, a dimensionless frequency,

o =wt/(al ). an

Defining a stream function such that

=
]

aw/a}, v = -3y/9x, (12a,b)

by

v =W/ (are)’2] 9 n,T), (13)

equation (1) is satisfied identically and (2) is

3 ~1 2 2 2
2, sifog 9% a0 9% | a%

1 = €gH(E) sin o7
an3 9E an2  9n 9EaIn 91dn

-1
- a HE)H'E) 1 + € cosot]2. (14)

The boundary conditions, (3) and (4) are

3 d
an 9E
and
%, HE) 1 +€ cosotr] asn + =, (16)
an

The tangential component of potential velocity, H(E), 1is a power series in
E. It is clear, from (14), that ¢ must also be a power series in £,

with each coefficient a function of N, T, and the parameter €. Each of
these coefficients will be expanded in a Fourier series in T, with each
Fourier amplitude a function of n and the parameter €. Finally, each
Fourier amplitude will be expanded in a power series in €, with each
coefficient of the power series a function of n. These functions of n

are then found to be solutions of ordinary differential equations.



First, assume that

4G, = T2+ -8 1a, & E (). a7

n=0
Substituting (6) and (17) into (14) and equating the coefficients of
successive powers of £ on the left and right sides of equation (14), the

partial differential equations for the {Fj(n,T)} are found. F; satisfies

3 2 2 a2
FF + 5 3°F _ <3F1) - ¥R . P(t;e,0) - Q(t1;e,0), (18)
an3 13n2 an 31dn
where
P(t;€,0) = €0 sinoT, (19a)
and
L) 1 2
Q(te,0) =1+ _€4 * 2 cos ot + — €% cos 20T. (19b)
2 2
Next, define the operators
adr, a2F, 3F, 9F,  ¥F) 92F,
D(F.,F1;§) & —3 + Fj—3 = (j + 1) v 5 F. - —3  (0)
J and an2 an  an an2 I 5tan

and

9F. 3F. 92F,
G(F,,F,) = r_J. LF,. (21)
J an 9n an




Then,

with

D(F3 ,F1;3) =-1—P - Q,
4
1 1
D(F5,F1;5) =_P- (1 + _ C5) Q + 8C5G(F3,F3),
6 2
1
D(F7,F1;7) = —P - (1 + C7) Q + 9C7G(F5,F3) + 15 C7G(F3,Fs),
8
1 1 1
D(Fy,F;39) = — P - (1 +C +-C )Q+_—c [48 G(Fy,F3)
10 9,1 2 92 5 9,1
+ 1126(F3,F7)] + 18 ¢ G(F,,F,),
9,2
>
1
D(F; ,F ;1) =__P- (1L +C +C )Q+ C [30G6(F3,F9)
12 11,1 11,2 11,1
+ 10G(F ,F )] + ¢C 28G(F. ,F,) + 20G(F,,F.)],
9 3] 112[ 577 7:Fs)]

L]

Cs = a§/(aa5),
C; = a3a5/(a1 ),
Co,1 = azay/(aja9), Cg,» = a/(a1a9),

Ci1,1 = a3axy/(aja1)), C ) 2 = asay/(ajaq;).

(22)

(23)

(24)

(25)

(26)

(27 3a)

(27b)

(27¢,d)

(27e,£)



The boundary conditions for the {F2n+1} are

= a =
Fone1 (07 = OFpp ) Mg = 0 (28)
and
[2(n + 1) - GOn](8F2n+18n) + 1+ € cos 0T, (29)
as . N > o,

We have previously found the solution for Fj; up to, and including,
terms in €3 (Grosch and Salwen, Appendix B). Although the

boundary layer equations are being used in this study, it should be noted
that EF, (n,r) 1is a solution of the Navier-Stokes equations for oscillatipng

stagnation point flow. It is easily seen that the form of the solution for

each of the F2n+1 is the same as that for F;. Therefore, we have for
j=1,3,...,11
S .2 T _2mk
F.(n,t) = )} {e“™f, 0 0 (M) + yoet™K[g, g (M) cos (koT)
i =0 js2m, k=1 j,2m,
. T )
+ gj,2m,k(n) sin (koT)] (30)

It is quite straightforward, but somewhat tedious, to obtain the ordi-
nary differential equations and boundary conditions for the f's and g's.

These differential equations are given in Appendix A.

One of the major problems associated with series solutions of this type
is that of determining the radius of convergence. On the basis of the
results from the study of oscillating stagnation point flow
(Appendix B), it can be concluded that the power series in € is rapidly
convergent for € < 1, except perhaps at very low frequencies. If the fre-
quency of oscillation is low, then a quasisteady approximation 1is quite
accurate. Because of the rapid convergence of the series in €&, for €

small, only the terms through €2 have been calculated.

10



A much more difficult problem is estimating the radius of convergence
of the power series in £. It appears that there are no general results for
determining the radius of convergence of the steady Blasius series. Van
Dyke (1957) has shown that the steady Blasius series for a parabolic
cylinder diverges for ;/ro > 0.62, where L is the radius of curvature of
the parabola at the nose. The results given by Schlichting (1979) for the

steady Blasius series for a sphere of radius r  suggest that this series

is convergent up to at least x/ro = /2. It seems reasonable to assume that

the time dependent series solution given here is convergent for & = X/& < 1.
RESULTS

Numerical integration of the equations given in Appendix A yield the

) . . . . 1
{fj,Zn,k’gj,an} Substituting (30) and (17) into (13) and using (12)

gives, for the velocity components (u,v),

*® 2n+1 om
= - ]
u/Uo Z [2(n + D Gon] aZn+1£ 2 [E f2n+1,2m,0
n=0 =0
° 2m+k
mt , ' _
' kzl & e 2m, ke ©OROT) * 8y ok Sl“(koT)}]}, eV
-1/2 =
2n
U =- _
v/u (a Re) g {[2(n + 1) aon](zn +1) a K
n=0
s 2 Y _2mk
m m+
nEO [E f2n+1,2m,0 * kél & { 2n+1,2m,k cos (kot) +
* Bon41,2m,k 510 (T )}]}- (32)

The velocity field depends on the body shape, the {aj} , the

Reynolds number, Re, and the dimensionless frequency, 0. It should be

11



noted that the effective Reynolds number and frequency depend, to some

extent, on the body shape because the velocity scale is aon, see

equations (8), (10), (11), and (13). 1It is clear from (31) that, as usual,
the tangential component of the velocity, u, has no explicit dependence on
the Reynolds number which only affects the scaling in the normal (n)
direction. Again, as usual, the normal component, v, 1is proportional to

Re-1/2 ip addition to the scaled dependence of the normal coordinate.

Through the terms in 82,

2 (1)

u/U =u (E,n) +eu, E,n) +efu (,n) cos o'r+u(2)(£,n)
o 0,0 2,0 0,1 0,l
X sin 0T] + Ez[u(l) cos 20T + u(Z) sin 2071] 33)
0,2 0,2 ?
1/2 2 (1)
v/U =- (a,Re)~''4{v En) +e v, (en)+ e[v (E,n) cos o1
o 1 0,0 2,0 0,1
2
+ vgzi sin GT] + € [vgl;(i,n) cos 20T + vézg(g,n)
3 3 3 (34)
sin Z)'T]}
with,
~§[z(+1>—6] g2l (n) (35a)
uj,o n=0 n on' %2n+1 2n+l,j,0 nJs a
(1) 2 2n+1
up " nzo [2a+ D -8 ]a, . ¢ Enel 0,3 (35b)
(2) 2 2n+1
N nzo[z(n + 1) - GOn] a, .1 & g2n+l’o,j(n), (35¢)

12
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5

= —- 2n
vj,o néo [2(n + D Gon] (20 + 1) a2n+1 & f2n+1,j,o(n)’ (35d)
(1) 2 2n
Vo.i " nzo [2(n + 1) - Gon] (2n + 1) el & Eanel,o,i M) (35e)
v2) . f [2(n + 1) -8 ] (2n+1) a g2n () (35£)
°J 2o on n 2n+1 Eon+l,0,5 7"

The superscript (1) indicates the component of the velocity in the
boundary layer which is in phase with the free stream oscillation, and the

superscript (2) denotes the out of phase component.

Figure 1 is a sketch of a typical blunt body and the coordinate system.
The tangential and normal velocity components are u and v. The Cartesian
coordinate system (x,y) 1is also shown in figure 1. The velocity compo-

nents (4,V), parallel and perpendicular to the body axis are related to

(u,v) by
4 =ucos® - v sin 6, (36a)
V=usin® + v cos 0. (36b)

There is an inherent difficulty in presenting the results of the calcu-
lations in such a way as to make them intelligible. The reason for this
difficulty is that the character of the flow, in the boundary layer varia-
bles, changes drastically with position. 1In front of the body the flow is
primarily directed towards the body, so u 1is very small and v dominates,
in fact for n 1large, v=s - U,. As the flow moves around the body v
decreases and u increases so that near the midpoint u dominates. For
this reason it seems most reasonable to present the results in the (x,y)
coordinate system. In particular, in terms of 4, the component of the
velocity is parallel to the axis of the body. Note, however, that as y is
varied at fixed x both & and n wvary. Presentation of the results in
terms of u also facilitates comparison of the results of these calcula-

tions with the experimental results of Kachanov, Kozlov, and Levchenko

13



(1978) although, as will be discussed below, the correspondence between the

conditions of the experiment and of this calculation is not exact.

Detailed calculations have been carried out for the flow past two types

of bodies; elliptic and parabolic cylinders.

3.1 Elliptic Cylinders

On the surface of an elliptic cylinder the tangential component of the

potential flow is
HE) = [1 + (b/a)] sn(E;k), (37)

with a the semi-major axis, b the semi-minor axis,

sn the Jacobian elliptic function, and

K =1- (b/a)? (38)

The length scale is the semi-major axis, a. The coefficients in the power

series expansion for H(§), the {a2n+1} are given in Table 1, (Cayley,

1895). The radius of convergence of the Blasius series for an elliptic
cylinder is, apparently, not known. However, the calculations appear to

converge up to at least the midpoint on the body, that is to

£ = E(k), 39)

where E is the complete elliptic integral of the second kind. The
calculations were ended at this value of & because we are primarily

interested in the flow on the nose.

Calculations of the velocity field have been carried out for a number
of bodies with different slenderness ratios (a/b) and frequencies, o.
Results are given for three bodies; a moderately thick ellipse with a/b =
5; a thin ellipse, a/b = 10; and a very thin ellipse, a/b = 25, see
Table 2. For each of these values of a/b calculations were carried out
for a low frequency o =T7/4, two intermediate frequencies, o =7n and

31, and a high frequency, 0 = 6m. In all cases the Reynolds number was

14



taken to be 100.0. The results at other, particularly higher, Reynolds
numbers appear to have the same form when distances are rescaled to the

appropriate boundary layer thickness.

Contours of the zero order steady flow, G& o 2are shown in Figures 2,
3

3, and 4. The format of these figures, and all of the others-is the same.
The body shape is plotted in the lower right hand corner of the figure and
the flow is from left to right. For each body the semi-major axis is the
same length. The body shape has not been distorted, however the region
outside of the body has been stretched in order to show the details of the
flow in the boundary layer. The coordinate system outside the body is the
(E,n) system which is shown in Figure 1. The distance & = 1 corresponds
to four of the major units of the scale shown on the edges of Figure 2 and
all others. The distance N = 1, on the other hand, corresponds to one of
these major units. Thus, for example, the coordinates of the point in the
lower left hand corner of Figure 2 are & = 0 and N = 4, and those of the

upper right hand corner of Figure 2 are £ = E(/0.96) 1.05050, and n =

4.2. Note, however, that although the (£,n) coordinate system is used,
these are contour plots of u, the velocity component parallel to axis of

the ellipse.

The results shown in Figures 2, 3, and 4 show that the zero order in
€, mean flow has the same general features for bodies of different
slenderness. Ahead of the body there is a boundary layer merging into the
decelarating potential flow. Near the midpoint of the body the flow is
nearly parallel to the body and the boundary layer flow merges into the
tangential potential flow. 1In between there is a kind of "bubble" where

~

U, is small. This extends somewhat in front of and above the forward
s

portion of the body. This region of small Go o occurs because both u
H 2

and Voo Aare small and are at a substantial angle to the x axis. As the
3

fluid flows around the nose of the body u increases but v decreases
until near the middle of the body where it is O(Re~!/2). Therefore, on the
forward portion of the body, but away from the axis, u is increasing with
€ but is still not large and v 1is decreasing. Finally, as the body

becomes more slender, the steady boundary layer tends to become thinner.

15



Figures 5 through 16 are contour plots of the second order steady flow,

~

u, o Figures 5 to 8 show the results for an elliptic cylinder with
3

a/b = 5 for a sequence of frequencies, o =w/4, ®, 3w, and 6m,
Figures 9 to 12 show similar results for a/b = 10, while the results for
a/b = 25 are given in Figures 13 to 16. Examination of these figures

reveals some general patterns in the flow.

In all cases u
2,0

layer and negative in the upper portion. At low frequencies the maximum and

is positive in the lower portion of the boundary

minimum values of GZ o, occur at the midpoint of the ellipse. As the
H]

frequency increases the maximum tends to shift towards the front of the body
and the thickness of the regions of both positive and negative secondary
mean’ flow tend to decrease. However, as the ellipse becomes more slender

i.e., a/b increases, the region of appreciable 32 o tends to be confined
3

to the near midsection of the body. The absolute magnitude of this secon-
dary flow also tends to decrease with increasing o. Finally, at low

frequencies the max (az ) is greater than |min(u2 )|, but at high fre-
’ O

quencies this is reversed. These results show that the Reynolds stress
generated by the nonlinear interaction of the fundamental oscillatory flow
with itself cause the formation of a weak, secondary, shear within the main
steady boundary layer. At low frequency the maximum shear occurs near the
middle of the boundary layer. As the frequency increases, the position of
maximum secondary shear shifts towards the boundary.

Contour plots of the amplitude and phase of Go 1 the fundamental
3

oscillation at frequency 0, are given in Figures 17 through 28. As above,
these show results for a/b =5, 10, and 25 and o =n/4, w, 3w, and 6.
The phase is, of course, arbitrary to within an additive constant. It has
been assumed that for both the fundamental and éhe first harmonic, the phase
is zero at £ =0, n = 4.

In all cases the contour maps of the amplitude of .Go 1 Figures 17a
I 3

to 28a, bear an obvious generic relationship to the corresponding contour

plots of a for the same values of a/b. Of course, the structure of
y

the flow does change with the frequency of oscillation. The amplitude of

the oscillation decreases in front of the body and a region of reduced flow
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is present above and, generally, in front of the nose of the body. As the
oscillations move up onto the body, the amplitude grows. 1In all cases a
peak in the amplitude distribution appears in the middle to lower part of
the boundary layer at the midpoint of the ellipse. For a fixed value of

a/b the location of this maximum of O moves towards the boundary as the

l,0
frequency increases, reflecting the development of a Stokes shear layer at
high frequencies. 1If the frequency, o, is held fixed, the location of the

maxXimum of 81 o also moves deeper into the boundary layer as a/b
L]

increases, i.e. as the body becomes more slender. This is shown in Table 3,

in which the location of the maximum of ﬁo 1 is tabulated as a function
H]

¢ and a/b.

The contour plots of the phase of Go 1 Figures 17b to 28b, are all
’

quite similar. The region of deceleration of the potential flow and the
development of the boundary layer are obvious, as is the thinning of the
boundary layer as it develops into a Stokes layer at high frequencies. Just
back of the nose, the lines of constant phase tend to be parallel to the
body with a noticeable thickening at low frequency near the midpoint of the
ellipse. As ¢ increases the region over which the phase shift occurs
tends to thin. 1In all cases this region lies deeper in the boundary layer

than the position of maximum u Independently of the value of a/b,

o,1°
the total phase shift appears, from the results given in Table 4, to be

tending to m/4 as 0O > o,

Finally, Figures 29 through 40 are contour plots of the amplitude and

phase of Go 2 the first harmonic of the free stream oscillation. Again
3

these results show very substantial internal consistency.

The boundary layer in front of the body is readily apparent. The

- ”~ 3
region of nonzero |u decreases as the frequency increases at constant

|
a/b and as the slendegazss, a/b, increases at constant frequency. The
amplitude of 30’2 has a maximum in the lower part of the boundary layer.
For fixed a/b the position of this maximum moves lower in the boundary layer
and forward on the body as 0 increases. At constant frequency the height
of the maximum remains nearly fixed while moving back toward the midpoint of

the ellipse as a/b increases.
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The phase shift of Go is generally nearly constant over the region

2

containing the maximum of 13 and then goes negative in the outer

0,2l
portion of the boundary layer. In this outer region the phase then
increases towards zero. At low frequencies this outer phase shift occurs

over a thin layer, but at higher frequencies it is fairly broad.

The first harmonic of the free stream oscillation is always confined to
the steady boundary layer and, as o0 1increases, is confined to a thin
Stokes layer adjacent to the body. As the fluid moves up onto the body,
away from the nose, the amplitude increases but never becomes large. In

fact, |u is never greater than about 5 X 10-2. The velocity

0,2|
fluctuations due to harmonics of the free stream oscillation thus never

exceed 5 x 10-2 g2,

3.2 Parabolic Cylinders

We next consider the flow past a parabolic cylinder

where a 1is the distance from the nose to the vertex. Choosing the length
scale to be a, the tangential component of the potential flow is a power
series in odd powers of & = x/a. The coefficients of this series are given
in Table 5. The solution does not contain any geometric parameters, that
is, apart from the scaling, is independent of a and is, therefore, a

similarity solution for all parabolas.

The radius of curvature at the nose of a parabola is

r, = 2a. 41)

Using Van Dyke's (1957) result that the Blasius series diverges for x/rg

> 0.62, the solution given here is expected to converge only for £ < 1.24.

The coefficient a = 1/4 for a parabolic cylinder, so that

o = 4Wwe /vy). Thus the "effective" frequency in the differential equa-
tions for the f's and g's 1is four times the true frequency of oscilla

tion. Of course, a similar scaling applies to elliptic cylinders, but for
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an ellipse a = (1 + b/a)~L, which is nearly unity for slender ellipses.
Because of the factor of four in the value of ¢ for a parabola,
calculations were carried out for o = w/16, w/4, 3n/4, and 31/2, so

that results would be readily comparable to those obtained for the ellipses.

Contours of the 0(1) mean flow past a parabolic cylinder are

u ’
given in Figure 41.0’%he format of this, and all of the other figures
showing the results of the calculations for a parabolic cylinder, is similar
to those figures showing the results for elliptic cylinders. The body is
shown in the lower right hand corner. Distances normal to the boundary are
scaled so that one major unit of the scale on the border of the figure
corresponds to one unit of N, the boundary layer coordinate. Thus the
point in the lower left hand corner of the figures has the coordinates

g = 0.0, n = 6.0, and the top of the parabola at the right hand side of the
figures has the coordinates & = 0.90, n = 0.0.

A parabola is, in some ways, a rather peculiar blunt body in that it is
not a closed body, so that there is no trailing edge, and that the thickness
of the body is a monotonically increasing function of the distance from the
stagnation point. Therefore, the farther back from the nose, the thicker is
the region of potential flow which is substantially influenced by the body.
This effect is apparent in Figure 41. There is a region of reduced flow in
front of the parabola due to the deceleration of the potential flow and the
formation of the boundary layer. This region extends far above the axis of
the body because of the blocking effect of the parabola on the potential
flow ahead of the body. In the region in front of the nose the contours of
uo’0 are nearly equally spaced. Just above the parabola, these contours
tend to line up with the body and the distance between them becomes
increasingly smaller as the flow moves onto the parabola and the quasi-

parallel boundary layer flow develops.

Contours of the steady, second order, streaming flow, GZ o? for
H
46 =un/4, w, 3w, and 6w, are shown in Figures 42 through 45. These

plots show features which are similar to those seen in the contour plots of

~

u2 o for the flow past an ellipse, Figures 5 through 16. In both sets,
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u is positive in the lower portion of the boundary layer and negative in

2,0
the upper part. The thickness of the secondary boundary layer decreases

as the frequency increases and there is a slight tendency for the position
of the relative maximum and minimum of 32 o. to shift forward towards the
stagnation point as 0 increases. Howeve;, as O 1increases the max132’0|

decreases significantly.

Figures 46 to 49 are contour plots of the amplitude and phase of Go 1
3

the fundamental oscillation in the free stream flow past the parabola. The

contours of the amplitude of 1 show a general similarity to those of

3
o,1
steady flow, ﬁo 0" However, as O 1increases a Stokes layer develops on

s

the parabolic cylinder and moves forward towards the stagnation point. Away

from the stagnation point, the contours of Go | are similar to those of
E]

for an ellipse if the surfaces are rotated so as to be locally

~
u
o,1°

parallel. The local maximum of [t seen in the flow past an ellipse is

o,1’
not, however, seen for the flow past the parabola. The contour plots of the
also show the development of a Stokes shear layer. The

in Figures 46b through 49b

phase of Go,l’

total magnitudes of the phase shift for Go 1’

3
are quite close to those for the corresponding cases for the elliptic
cylinders. '

Contour plots of the amplitude and phase of Go 29 the first harmonic
3

of the oscillation in the free stream speed, are shown in Figures 50 to 53.
The results shown in these figures illustrate the development of a second
order Stokes shear layer within the steady boundary layer as the frequency

increases. The maxlﬁo - increases with &, at all o, at least up to

,2|
the point £ = 0.9. It cannot be determined whether or not there is a
localized maximum in the amplitude, as was found for the elliptic cylinders,
or whether the amplitude reaches a plateau. The problem is that, in order
to decide this question, the calculations would have to be extended sub-
stantially beyond £ = 0.9, but, as mentioned above, the series expansion
probably is divergent for & > 1.24, and probably converges very slowly for
£ close to 1.24.
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DISCUSSION AND CONCLUSIONS

Perhaps the most general conclusion which can be drawn from the results
of this study is that in the region of the nose of a symmetric, two dimen-
sional blunt body at zero angle of attack, the steady plus oscillating flow
is very similar for a wide class of body shapes. This conclusioon has been
shown to be true for elliptic cylinders with a/b < 25, and for the parabo-
lic cylinder. Additional calculations, not reported here, were carried out
for elliptic cylinders with values of a/b up to 100, with results which
are very similar to those reported here. 1In all cases, the flow field in
the nose region of a two-dimensional blunt body is generic to that of the

flow in the neighborhood of the stagnation point on a plane wall,

A general picture of the flow on the forward portion of a blunt body,
due to a steady plus oscillating free stream, can be sketched. Forward of
the body there is a region of decelerating potential flow which merges into
the viscous stagnation point boundary layer. On the stagnation stream line
the boundary layer thickness is 2.382 (Re)~!/2, with £ the scale length
of the body. If one considers U, the velocity component parallel to the
body axis, there is a region of small u, above and ahead of the nose,
where the velocity is reduced and is at a significant angle to the body
axis. On the body itself, the boundary layer changes slowly with distance

from the leading edge. The description, so far, applies to Go o’ the 0(1)

2

steady flow.

If one next turns to Go 1 the fundamental oscillating component of
1

the flow, the above description is, with some additions and amendations,

valid. These are due to the changes with frequency in the oscillating flow.

T
At low frequencies, m2/31U° < —, the flow is essentially quasi-steady;
4

that is, it is the steady flow scaled by the instantaneous free stream
speed. As the frequency increases, the oscillating boundary layer develops
into a Stokes shear layer. This change occurs along, at least, the entire
forward portion of the body, independent of the position on the body. This
is not completely obvious when u is examined, but it is obvious if

o,l

u the component of the velocity locally parallel to the body is

0,1’
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studied. As shown in Appendix B, the development of a Stokes
layer at high frequency occurs at, and in the neighborhood of, a stagnation

point.

This is in marked contrast to the results of Ackerberg and Phillips
(1972), who concluded that the Stokes layer only develops far downstream of
the leading edge of a flat plate. This may be due to the fact that there is
a singularity at the leading edge of the (nonphysical) infinitely thin flat
plate, or it may be due to the scaling assumptions of Ackerberg and
Phillips, which, in effect, equate low frequencies with small distance from
the leading edge and large distance from the leading edge with high frequen-
cies. In the calculations reported here, the distance from the stagnation

point and the frequency are independent.

The oscillations in the boundary layer, which exist at all frequencies
and at all positions on a blunt body, could be interpreted as an oscillation
in the steady boundary layer thickness. In the free stream, the mean (time
averaged) speed is Uo’ and the boundary layer thickness is conventionally
defined as the height in the boundary layer, §, where u(§) = 0.99 Uo. As
u increases and decreases at fixed TN, because of the oscillation, the

instantaneous value of § would appear to increase and decrease. It is

quite easy to estimate the amplitude of the apparent oscillation in &, if

the velocity oscillations in the free stream are small. Let

8 .—_6o+61(t), %2

with 60 the time averaged boundary layer thickness, and §; the oscillat-

ing component of the boundary layer thickness. By definition,

<u(8)> = 0.09 <U> = 0.99 v, (43)

where <> 1is a time average. Then, if € << 1, it is easy to see that, to

lowest order in €,

§; =]e/( 2,9y cos (wt +6), (44)
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where, as above, u o is the 0(1) steady boundary layer flow component

parallel to the boundary, and 8 is the phase of
y =60'

u

o,1’

evaluated at

In the neighborhood of the stagnation point on any blunt, two dimen-

sional body, §, scaled by £, 1is

8o = 2.38 (Re)‘l/z,

and

(—2:9) s 2.6 x 10-2.

So that, in the vicinity of the stagnation point,
|6, ] = 38.5 €(a;Re)~1/2

and

|8, |/60 =~ 16.2 e(a /2,

|61|’

(45)

46)

scaled by 2, is

(47)

(48)

At low frequencies the flow is very nearly quasi-steady, but at high

frequencies, there can be some distortion of the velocity profile. If o

is large, u is essentially constant outside of the Stokes layer which

o,1

3
has a thickness of 0(600‘1/2). Inside the layer, u

0,0
constant, in n, time varying increment to u

0,0"

0,1
distortion of u , while outside the Stokes layer u
o

can cause some

1’ only adds a

It may be useful, at this point, to give an idea of what is a low

frequency and what is a high frequency. From équation (11),

o= wl/(aon) .

If, by way of illustration, £ = lm, aj =1, and Uo
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o =7nE/5 (49)
where f 1is the frequency in Hertz. Thus for

o Xn/4,
the low frequency region,

f £ 5/4 Hertz.

While, for high frequencies,
o 6mr, £f 2 30 Hertz.

In summary, for this example, frequencies below 1 Hz are low frequencies,
those greater than 30 Hz are high frequencies, and the range of 1 to 30 Hz

is the intermediate range of frequencies.

Considering next the terms of 0(82), there is both a second order

steady streaming flow, Uy o2 and U g the first harmonic of the free
> b

stream oscillation. The steady streaming flow extends throughout the 0(1)
boundary layer at low frequencies, but at high frequencies, it is largely,
but not completely, confined to a Stokes layer. However, at high

frequencies, there is a small portion of u, o which decays to zero in an
3

outer layer, with a thickness of the same order as that of the 0(1) mean

boundary layer.

The magnitude of this flow, |u2 0|, increases with £, and for an
3

elliptic cylinder has a maximum just in front of the midpoint of the
ellipse. Such a maximum may, or may not, occur on a parabolic cylinder.
Because of the limited range of convergence of the series expansion, the

calculation cannot be reliably extended far enough to decide.

The first harmonic, u has a structure which is partially similar

0,2’

to that of the secondary streaming flow, u

) o° and partially, to the
-
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fundamental, u - At low frequencies it extends throughout the steady .
3

boundary layer and at high frequencies is confined to a Stokes layer. It

also develops a maximum amplitude some distance from the stagnation point.

Both the first harmonic and the secondary streaming flow are present at
all &, even at the stagnation point. Away from the stagnation point they
are somewhat modified, but have the same character as in the neighborhcod of
the stagnation point. 1In particular, the estimate (see Appendix B)
that they are bounded by (€/0)% seems to be valid over an appreciable
range of £, in fact, up to the midpoint on elliptic cylinders and over the

range of a convergence of the series for flow past a parabolic cylinder.

The only experiment with which the results of these calculations can,
apparently, be compared is that of Kachanov, Kozlov, and Levchenko (1978).
They studied the flow past a flat plate with a nose consisting of two com
jugate ellipses with a semi~major axis, a = 50 mm and semi-minor axis, b =
2 mm on the working side and a = 128 mm and b = 8 mm on the other side.
Figure 54 shows the cross section of this body from the nose to a distance

of 20 mm back from the nose.

In Figure 2 of their paper, Kachanov et al. give contours of (in the

notation used here) uo o in the region from about 10 mm in front of the
?

nose to about 15 mm behind it, and from the axis of the body to 6 mm
above. Figure 55 is an enlarged copy, supplied by Dr. Levchenko, of Figure

2 of their paper. In this figure the contours are labeled with the speed in

units of meters/second.

It is obvious that there is a general, qualitative agreement between
the theoretical results shown in Figures 2, 3, and 4 for the mean flow and
the experimental results of Kachanov et al. shown in Figure 55. The major
difference between the theoretical and experimental results is the closed
contour labeled 6.0 in Figure 55; nothing like this is seen in the results
of the calculations. The experimental result is rather curious. Either
there is an absolute maximum within this contour, a "peak', or a local mini-
mum lies within the contour, so that the contour is the "lip of a volcano."
In either case the flow speed, as shown in Figure 55, is a maximum outside

of the boundary layer.
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It is well known that, for a potential flow, the maximum velocity
occurs on the boundary. The potential flow past an ellipse is a classic
problem (Milne-Thomson, 1955). Calculations of the potential flow for an
ellipse with é/b = 25 confirm that the maximum of a occurs on the
boundary at the midpoint of the ellipse., Taking into’account the existence
of the viscous boundary layer, the maximum speed should occur at the top of
the boundary layer. How is it then possible to account for the existence of

a maximum in the speed in what is, apparently, a region of potential flow?

There seems to be three possibilities. The first, and most obvious, is
experimental error. This does not appear to be likely because it would
require systematic errors of the order of 10% to 15%. A second possibility
is that the stagnation point is not on the axis of the body (see Figure 54).
If, as seems likely, the stagnation point lies below the axis, then the flow
must first move through a region of adverse pressure gradient until it gets
around the nose. Then, for a short distance, the pressure gradient is
favorable, and then falls rapidly to almost zero just behind the nose. It
is possible that there is a local flow separation and reattachment, a
separation bubble, just behind the nose of the upper ellipse. This would
lift the boundary layer in this region and might account for the closed
contour of Gﬁ,o in the results of Kachanov, Kozlov, and Levchenko. The
third possibility is that the free stream vorticity is not zero. If the
free stream vorticity is non-zero, perhaps there is a shear in the free
stream, then, depending on the distribution of free stream vorticity, a
maximum of the speed could occur virtually anywhere outside of the boundary

layer.

There is, of course, a final possibility. These theoretical arguments
and calculations may be wrong. It may be possible, for some reason, that a
non-rotational potential flow has a maximum away from the boundaries. Or,
it may be that there is a viscous effect, not included in these calcula-

tions, which causes a maximum in the speed outside of the viscous boundary

layer.

Kachanov et al. also give experimental results for an oscillatory
past this body. The oscillatory flow is caused by a vibrating ribbon above

the axis of the plate and in front of it. As Kachanov et al. indicate,
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the periodic vortices shed by this ribbon passed above the plate and only
the tails of the vortices impinged on the nose of the plate. The results of
the calculations given here are, at best, in rough qualitative agreement
with the experimental results of Kachanov, Kozlov, and Levchenko. In part,
their results show an absolute maximum in the amplitude of the oscillatory
velocity in a small region just above the axis of the plate and just beyond
the top of the steady boundary layer. They also show a rapid change in the
oscillatory flow immediately below the region of maximum which was discussed
above. As was discussed above, either the calculations reported here are in
error or the experimental results reflect unnoticed effects. In fact, from
the results given in Figure 1 of Kachanov et al. it appears that the
oscillation has a nonzero shear in the free stream. In any event, this
issue requires clarification and would seem to require further work, both on

the experimental and theoretical aspects of this problen.

Finally, if the theoretical approach used here and the results are
correct, it would seem to have value beyond this particular study. The
general character of the flow, in the nose region of the blunt bodies con-
sidered here, is very similar to that of the flow in the immediate neighbor-
hood of the stagnation point. As the flow moves around the nose of the
body, no essentially new features appear. This suggests that the structure
of the flow on the forward part of a blunt body due to more general classes
of disturbances, such as vorticity waves, can be found by studying the flow
due to these disturbances in the neighborhood of a stagnation point. It
seems clear, at least for two dimensional flows, that a linearized, in ¢,
theory is sufficiently accurate. The results given here show that, for any
ellipse and for any parabola, the second order terms are bounded by (e/a)?
for 0 2 1. It also should be noted that the steady flow in the neighbor-
hood of a general three-dimensional stagnation point is known. This should
facilitate the theoretical study of disturbances impinging on a body in the
region of a stagnation point. These approximations, flow near a stagnation
point, and linearization in €, should be a considerable simplification for

both analytical and numerical studies of boundary layer receptivity.
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APPENDIX A
DIFFERENTTAL EQUATIONS AND BOUNDARY CONDITIONS FOR THE F'S AND G'S

The function Fy(n,T) is the solution of the oscillating stagnation
point flow problem (Grosch & Salwen, Appendix B). The differen-—

tial equations and boundary conditions for the £'s and g's are given

there through terms €3 and will not be repeated here.

The differential equations and boundary conditions for the f's and
g's given here are those in the expansion of the {Fj(n,T)} for

J=3,5,...,11 and e, with n< 2. First, we define an operator L by

£,
9 SRILE P £, PG £ d
gj,k,k dn3 »0,0 dn2 »0,0 dn
f. k.2
ey L) (A1)
’0,0 gj’k’gl
where f1 o o(n) is the 0(1l) function in F;, and is the Hiemenz function,
E 3

and primes denote differentiation with respect to n. Note that in (Al) the
coefficients are j and j + 1 and that j 1is the first index of the f

or g wupon which L operates. Next we define a second operator S by

S(f(M), gn);a,B,y) = afg" - Bf'g' + yf'g, (A2)

where f and g are any functions of n, primes, again, denote differen

tiation and a, B, and Y are arbitrary constants.
Then for the terms proportional to &3 we have, at 0(1)

Lf3 = -1 (A3a)
30,0
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£ = f! 0
3,0,00 = £3,5,0(0) = 0.
£ o+l 4 new
3,0,0 4
At 0(e) we have
- og! = -2 - S(f £ :1,4,3),
L3 0,1 83.0,1 2 ( 1,0,1, 3,0,0° ° "
L + o f! =-1-c-s( f :1,4,3)
3,0,1 3,0,1 €1,0,1°%3,0,0° 227>
= ! = = ! =
f3,o,l(0) f3,o,1(0) 83,0,1¢9 g3,o,1(°) 0,
f! - E. g! + 0 as N>
3,0,1 ° ;7 %3,0,1
And at 0(2)
Lf i £ 1,4,3)
3,2,0 7 S(f1,2,o’ 3,0,0* 7
- 1-[s(f £ ;1,4,3) + S(g g
7 1,0,1°%3,0,13 2% 1,0,1'83,0,
= ! =
£y,9,0(0) = f3 5,00 =0
1 > +&.
f3’2,0 0 as n
and

=- 1 se £

Lf 2 1,0,2°73,0,0

- 1 .
3,0,2 2 g3,0,2 31,4,3)

[s(f 1,4,3) - s(g,

1,0,1°%3,0,1°

N |

30

o,l’g3,o

(A3b)

(A3c)

(A4 a)

(A4b)

(A4c)

(A4 d)

(A5a)

L&),

(A5b)

(A5¢c)

;1,4,3)], (A6a)



3’0!2 31052 - S(glsO,Z’f3’O;0;1,4’3)

1
- ; [S(fl,o,l’g3,0,l’

= ! = = ' =
£5.0,2(0 £3,0,2¢® 33,0,2(0) 33,0,2(0) 0,

fl

> ! > 3> o
3,0,2 g3’o’2 0 as n .

Next the f's and g's proportional to g5 satisfy, first to

1 1
707

= — 1 _
Lfg 5,0 =~ (1 + E.cs) 8Cs S(f3 , 4>

fS,O,O(O) = fé,o,o(o) =0

f as n » ™,

1 1
5,0,0 'g
Then at 0(e)

- 1 _ )
Lfs 5,1 = 985 ,5,1 = —2(1 + E.CS) S(f) 5,185 ,0,051:6,5)

- 4C5 S("Eli,o,o’f3,o,1;1’2’1)

Les, 0,1 *9f5 6,1 = %—0 - 8(8) 5,1:%5,0,031:655)
~4C5 8(f3 . 683,0,151:2:1),

f5.0,1(0 = £5 5 10 = g5 , 1(0) = g5 , 4(0) =0,
1

1 1
fS,O)]- > g’ g5,o,1 >0 as n > =,

The equations and boundary conditions at 0(e2) are:

- 1 1 . 1
Lf5,2,0 == E (1 + E Cs) - S(fl’z’o,f5’°,0,1,6,5) - -E

x [8(E) 5 1:85,6,131:655) + S(gy 4 1:85,4,131:6,5)]

-8 Cs{s(f3’2,of3’o’o;1,2,l)
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1,4,3) + S(gl’o’l,f3’o,1;1,4,3)], (A6b)

(A6c)

(A6d)

o(L)

(A7a)
(A7b)

(A7¢)

(A8a)

(A8Db)

(A8c)

(A8d)



1.1
*3 [S(f3,0,1’fs,o,1";'1f;) + 5085 5,183,015
1.1
X -i-’l’-z—]} (Aga)
= ' = . ' o
£5,2,0(00 = £5,5,5(0) =05 f5 , >0 as n> e (a9b,c)
Lf - 20g =-la+le)y - see £ :1,6,5)
5,0,2 5,0,2 2 2 °5 1,0,2°°5,0,0>"7?
- L [sce £ :1,6,5) - sS(g g :1,6,5) ]
7 1,0,1°%5,0,131:5 1,0,1°85,0,1312%;
. 1 .1, 1
805{s(fB,o,o’fS,o,Z’l’z’l) tg [ty o 1ofs o 3 LD
- 1,1 }
S(83 4.1983,0,1° 3217 ) (A10a)
1
[ ] = e - . - — .
Les 5,2 * 29%5 5.2 581 o.29F5,0,051:655) 5 [S(E) | (.85 o 13

X 1,6,5) + 8(g; s o 131,6,5)] - 8CS‘S(f3,0’°,g3’o,2;

1 1 1
X 1’2’1) +?[S(f3’°’1,g3,o’1fi‘,l,§') +{S(g3’o,l,f3’o’1,

x L jo]}’ (A10b)

£ o ,(0) = £ ,(0) = gS,o,Z(O) = gé’o’z(o) = 0;

x f! ! 0.2 0 as n + o, (A10c,d)
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The f's and g's which are proportional to &’ satisfy the

equations and boundary conditions, at 0(1)

Lf7,o,o =1 (1 + C7) - C7S(f3,o,o’f5,o,o;9’24’15)’ (Alla)
£, 000 =8 () =0, £ +% as m > (Al1b,c)
At 0(e) the equations and boundary conditions are:
LE, - 08y = 21w C) - SR LE51,8,7)
—C7[S(f3’o,o,f5’o’1;9,24,15) +8(Ey uEg o
x 9,24,15)], (Al2a)
Lg, + of! = E-o - S(g £ ;1,8,7) -
50,1 7,0,1 8 l,0,1°77,0,0
x C7[S(f3’o’o,g5’0,1;9,24,15) +80gy s o
x 9,24,15)], (A12b)
f7,o,1(0) = f;,o,l(O) = 37’0’1(0) = g;,o,l(o) =0, (Al2¢)
f;,o,l > 3 g;,o,l + 0 as n + o, (Al2d,e)
While at 0(¢2) we find
Lf, 5, 5=~ 1(1 +C5) - S(f) 5, »f, o 31,8,7) - _1.[s(f1 0.1°
»2, 2 32, 50, 2 30,

X £ 5,13 187+ S(’31,0.1’37,0,1;1’8’7)]
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- ¢ {s(f f o;9,24,15) + S(f3,o 19,24,15)

7 3,2,0,7 5,0, ,o’f5,2,o

1
+ o8 | 1af5 o 139524,15) + S(gy o 1.85 o 13

x 9,24,15)1}, (Al3a)
= ! = ' 5> o
f7,2’°(0) f7,2,o(0) 0, f7,2,o + 0 as n . (Al3b,c)
Lf - 2¢g! = - 1(1 + C,) - S(f £ ;1,8,7)
7,0,2 7,0,2 2 7 1,0,2?7,0,0” 7’
1
- ;'[S(fl,o,l’f7,o,1’ 31,8,7) + 8(gy | 1587 4 13
x 1,8,7)] - C7{S(f3’o’o,f5,o’2;9,24,15) + s(f3,°,2f5’o,°;
1
x 9,24,15) + 2.[S(f3,0’1,f5’0,1,9,24,15) - S(g3’o’1,g5’o’1,
x 9,24,15)]}, (Alsa)
1
1 = - . - .

Lg; 0,2 P 5 01 5(8) 5,257,000 1287 ~ 3 [SCE] 41987 0,13

X 1,83 3 H s = > H
7) $(g) 5,187,013 1287 C7{S(f3,o,o 55,2

1
x 9,24,15) + S(g5 ( ,»f5 . 39524,15) +-7[S(f3’o’1,g5,0’1;

x 9,24,15) + S(g; ;€5 1;9,24,15)]}, (Al4D)
L e [ R ]
= ' = = ] =
f7,0,2(0) f7’0’2(0) 87,0’2(0) 87’0’2(0) 0, (Al4c)
f' > g' + 0 as n 3+ o, (All;,d)

7,0,2 7,0,2
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For the tefms proportional to £9 the 0(1) equations and boundary
conditions are:

1 1
Lfg 0,0 =~ (I +Cq 1 +5Cy )= 15 C9,1 55 4 5257 5,05
96,320,224) - 18C, ,S(£ s f 2L (Al5a)
b 9,2°"%5,0,0°5,0,0°2° *3’? a
£ (0) = f! (0) = 0, f! > 1/10 as n * @, "(Al5b,c)
9,0,0 9,0,0 9,0,0
The O0(E) equations and boundary conditions are:
- Ogo! = - - f ;1,10
Lfy 0,1~ 890,10 = 2L * Cgq *Cg ) = SUE sy 600 »9)
1
- Tﬁ'C9,1[S(f3,o,o’f7,0,1;96’320’224) + S(f3,0,1’f7,o,o’
x - ; 16
96,320,224) ] 18C9’28(f5,o,0,f5’°,1,1,2,1) (Al6a)
L + g f! =10-S( f -1109)-10
£9,0,1 9,0,1 TO 1,0,1°%9,0,0° 2+ 10 “9,1
x [S(f3,o,o,g7,o’1;96,320,224) + S(gS,O’1f7’0’0;96,320,224)]
- . l b
18C9,28(f5’ 085.6,13 15251, (Al6b)
= ' = = ! =
f9,°’1(0) f9,o,1(0) 39’0’1(0) g9,o,1(0) 0, (Al6c)
£ > 1 g' +0 as N+ (Al6d,e)
9,0,1 T10° ®9,0,1 . s

The 0(e?) equations and boundary conditions are:

Lf = - i(l + C + l.c ) - s(

9,2,0 " 9,1 %3 %,2 £),2,0%9,0,05
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%X

1,10,9] - 5 [s¢£, 4

1,10,9)] - ¢

X

i 9,1{S(f3,2,of7,o,o

,f9’°’1;1,10,9) + S(gl,o,l’gQ,o,l;

;96,320,224) + S(f3 R
40,0

1 -
x f o,96,320,224) +-E[S(f3,o,1,f7’0,1,96,320,224)

7,2,

+

S(33,0,1"37,0,1;96’320

x

= £ = '
£ ’0(0) f9’2’°(0) 0, f9,2,o >

9,2

= -1
= -1+ G,

]
o=
—
wm
~~
rh
n

1,0,1°%9,0,1°

1
- 10 C9,1{S(f3,o,of7,o,2

,224)]} - 1809,2{S(f5’2,0,f5,0,0;

1

1 i 1 .
2,0+ 3lsCE 15 015 T ¥ 5085 ,0,1085,0,1°

(Al7a)
0 as N+ % (Al7b,¢)

1
+3 C9 9) ~ S(fl,o,Z’EQ,o,o’l’lo’g)

1,10,9) - s(g; 0,1,39,0’1;1,10,9)]
>

:96,320,224) + S(f3,o,2’

1
x £, 396,320,224) +5ls(ey o pof ;96,320,224)

’0’

S(g3’o’l,g7’°’1;96,320

X

7,0,1’

,224)]} - 1809’2{S(f5’0,°,f5’°’2;

1 1

l - — — - -
1,2,1) + 5085 o 150,10 5 Lag) ~ 585 5 185,0,1°

x £,1,3) ]}, (A18a)
1
t = - . —- — .
189 o,2 * 29%9,0,2 s(’51,0,2”59,0,0’1’10'9) 5 [8(f) 5,1°89,0,1°
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£ 1,10,9) ] "%6 C, , S(f ,

x 1,10,9) + 5(31,0, 9,1 3,0,0

1°%9,0,1°

;96,320,224) +-%

X

g4 0’2;96,320,224) + S(g3’o,2,f

7,0,0

[s(f

X

1396,320,224) + S(gg  1,f; 396,320,

3,0,1’g7,o, 7,0

X

224)]} - 1809,2{S(f5’°,o’g5,°’2;1,2,1) + S(fs’o’l,gs’o,l;

8 1’2’1)}’ (A18b)
= ' = = ] =
f9’°’2(0) f9’°,2(0) g9’0’2(0) g9,o,2(0) 0, (A18¢c)
£! >0 as n + o, (A184d)

]
9,0,2 > g9,0,2

Finally, for the terms proportional to Ell the differential equations

and boundary conditions are, at O0(1):

Lf)1,000 = (1 + €11t 011’2) - 011,18(f3,o,o’f9,o,o31°’40’3°)
- Cll,ZS(fS,o,o’f7,o,o;20’48’28) (A19a)
= ' =
f11’°,0(0) fll,o,o(o) 0, (A19b)
f] >qz as nve (A19¢)
11,0,0 12 .

The O(e) differential equations and boundary conditions are:

- ? = e -— .
L 1,0,1 ~ %8l1,0,1 = 201+ €y g * Cpy,0) TS o 1 fl0,00
x 1,12,11) - Cll’1[S(f3’°’o,f9,°’1;10,40,30)
+ S(f3’o’1,f9’o,1;10,40,30)] - 1.9 [S(fs’o’o,f7’o,1;
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x 20,48,28)] + S(f £ o;20,48,28)], (A20a)

5,0,1’7 7,0
Lg + of! =1—o— S( £ ;1,12,11)
11,0,1 11,0,1 12 81,0,1°"11,0,0° > °?
- . +s » £ H
011,1[S(f3,o,o’g9,o,1’10’40’30) 3 0.1°%9.0.0
X —_ .
10,40,30)] Cll,z[s(fs’o’o,g7,0’1,20,48,28)
+ .
S(gS’o’l,f7’o,o,20,48,28)], (A20b)
= ] = = ' =
fll,o,l(O) f11,o,1(°) 811,0,1(0) 311,0,1(0) 0, (A20c)
. 1
f 0 as 1n *> =, (A204d,e)

1]
11,0,1 ~ T2° 8l1,0,1 ~
And, lastly, the 0(e?) equations and boundary conditions are:

1
Lfll’z’o = - 7-(1 + cll’1 + 011’2) - S(fl,o,Z’fll,o,d’1’12’11)

1
2

[s(f £

1,0,1°F11,0,131:12,1D + 8(g;

1°811,0,1°

1,12,11] -

X

Cll,l{s(f3,2,o’f9,o,o;10’40’30) * S(f3,o,o’

10,40,30) + = [s(f £ ;10,40,30)

x £ 7 3,0,1°%9,0,1°

9,2,0°

;10,40,30)]} - Cll’z{S(fS,Z,o’f7,0,°;

+8(g3 1989 4.1
1

5 [8(f

X

;20,48,28) +
o

20,48,28) + s(fs’ o £ 5,0,1°

0,0’°77,2,

20,48,28)]}, (A21a)

£7,0,1320:48,28) + 8(gy .8, o o5
= f! 0) = 0,
fll,Z,o(O) 11,2,0( ) (A21b)
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f11,2,0 70 a n» e (A21¢)

1
-— ] = L T, -
11,0,2 ~ 2989 4 5 7 (1 vey, o+ 11,27 - 8(£)

,o,2’f11,o,o;

1
x1,12,11) -4 [S(fl,o,l’fll,o,l’l’lz’ll) 5(gy ;15

X 81),0,131:12,11) ] - C11.1 S(f3’o’o,f9,o’2;10,40,30)

1 E
+ S(f3’o’2,f9’o,o,10,40,30) + 3-[S(f3’q’1,f9’°,1,10,40,30)

S(33,0,1’gs»,o,l;m’“o’m)] " €11, S(fs,o,o’f7,o,25

X

. 1
20,48,28) + $(t5 0,20 E7,0.0520,48,28) M LA

x £

7,0,1320,48,28) - S(gs’o’l,g7,o,1;20,48,28)] ,  (A22a)

] = e .
211,0,2* 20811,0,2 S(gl,o,Z’fll,o,o’l’12’11)
1 .
-3 [S(fl’o’l,gll,o’l,1,12,11) + S(g

l1,0,1°

X £ o,130:12,10] - Cll,l‘S(fB’O,o,gg’o’z;10,40,30)

1
+ S(g3’o’2,f9,0’0,10,40,30) + [S(f3,o’1,g9’0’1,10,40,30)

3(33,0,1’f9,o,1;10’40’30)]} - 011,2{s(f5,o,0’g7,o,2;

X 20,48,28) + (g, 0,2°%7,0,0320,48,28) + 4 [S(fS’o’l,

x 87,0’1;20,48,28) + S(gS,o,l’f7,o,1;20’48’28)]}’ (A22b)
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= ! = = ] =
f“’o’z(o) fll,o,Z(O) 311,0,2(0) gll,o’z(O) 0, (A22¢)
) ] >
fl1,0,27 Bl1,0,27 0 a8 N> =, (A224d)
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Table 1. Coefficients in the power series expansion of the potential velo-
city function, H(E), for flow past an elliptic cylinder,

2n + 1 o B [1 + (b/a)]"la2n+1
1 1
3 -(1 + k%) /3!
5 (1 + 14K% + K*)/5!
7 - (1 + 135K% + 135k* + k®)/7!
9 (1 + 122812 + 5478k* + 1228k% + Kk8)/9!
11 (1 + 11069K% + 165826K* + 165826k° + 11069k + k!0)/111

Table 2. Parameters of the elliptic cylinders for which results are given.

_a/b K __E(K)
5 0.96 1.05050
10 0.99 1.01599
25 0.9984 1.00329
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Table 3. The position in the boundary layer of the maximum of Gl,o'
o a/b = 5.0 10.0 25.0
w /4 2.2 2.1 2.0
] 1.9 1.8 1.7
3 1.2 1.1 1.05
67 0.9 0.8 0.75

Table 4. Total phase shift, in degrees, of .Gl,o.
g a/b = 5.0 10.0 25.0
T /4 11.2 11.9 12.0
T 30.0 30.0 30.0
3 42.0 40.0 40.0
6T 42.0 42.0 40.0
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Table. 5. Coefficients in the power series expansion of the potential
velocity function, H(E), for flow past a parabolic

cylinder.

2n + 1 %90 1
1 1/4
3 - 1/22.3!
5 22/2% .51
7 -1168/2%.7!
9 113536/28 .91
11 -17521024/210 111
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Figure 1.

Coordinate system.
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Figure 2.

Contours of the zero order steady flow, Contours from 0.0

u .

0,0
to 0.90 with an interval of 0.05. The body is an ellipse with
a/b = 5.
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Figure 3.

Contours of the zero order steady flow, Go,o‘ Contours from 0.0

to 0.80 with an interval of 0.05. The body is an ellipse with
a/b = 10.
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Figure 5. Contours of the second order steady flow, 32-0' Contours from
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-1.6 x 1072 to 5.2 x 10”2 with an interval of 4.0 x 1073, The
labels are scaled by 10%. The body is-an ellipse with a/b = 5
and ¢ = w/h.
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Contours of the second order steady flow, 32’0. Contours from

-2.1 x 1072 to 2.7 x 102 with an interval of 3.0 x 10~3, The
labels are scaled by 10%. The body is an ellipse with a/b = 5
and ¢ = n,
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Figure 7. Contours of the second order steady flow, Gz,o‘ Contours from

-1.7 x 1072 to 1.2 x 10"2with an interval of 1.0 x 10~3. The
labels are scaled by 10%. The body is an ellipse with a/b = 5
and o = 3w.
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Contours of the second order steady flow, GZ o° Contours from
1}

-1.0 x 1072 to 6.0 x 10~3 with an interval of 1.0 x 1073. The
labels are scaled by 105. The body is an ellipse with a/b = 5
and o = 6m.
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Figure 10.

Contours of the second order steady flow, 32,0‘ Contours from

-2,0 x 1072 to 2.4 x 102 with an interval of 2.0 x 1073, The
labels are scaled by 10%. The body is an ellipse with a/b = 10
and ¢ = m,
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-1.4 x 1072 to 1.0 x 10~2 with an interval of 1.0 x 1073, The
labels are scaled by 10%. The body is an ellipse with a/b = 10
and ¢ = 3m.
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Figure 12.

Contours of the second order steady flow, . 32’0. Contours from
—8.0 x 10~3to 4.8 x 10~3with an interval of 8.0 x 107%. The

labels are scaled by 105.
and ¢ = 6w.

The body is an ellipse with a/b = 10
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Figure 13.

Contours of the second order steady flow, Uy o Contours from
H

~1.2 x 1072 to 4.2 x 10-2 with an interval of 3.0 x 10~3, The
labels are scaled by 10*. The body is an ellipse with .a/b = 25
and o = 7/4.



6S

IR HTHHTT'HWIITHIWIIHWTIIITTTII

El_l-llﬂlﬁﬂﬂ”ﬂ”]‘ﬂlHlllHWHHHIIHHHHHHHHlﬂlﬂﬂmlﬂHTHHHIIIHHHIIHHIHI

RERRTIN; IUULLULIHILLJU,H HHILI:H—t‘ttﬂT{‘ﬂ]lﬂlll L E

Figure 14. Contours of the second order steady flow, GZ,o‘ Contours from

~1.8 x 10~2 to 2.2 x 10~2 with an interval of 2.0 x 1072, The
labels are scaled by 10%. The body is an ellipse with a/b = 25
and 0 = T,
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Figure 15.

Contours of the second order steady flow, 32’0. Contours from

-1.3 x 10°2 to 8.0 x 10~3 with an interval of 1.0 x 1073, The
labels are scaled by 10%. The body is an ellipse with a/b = 25
and o = 3m.
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Figure 16. Contours of the second order steady flow, 32 o° Contours from
]

=7.7 x 1073 to 4.2 x 1073 with an interval of 7.0 x 10”4, The
labels are scaled by 105. The body is an ellipse with a/b = 25
and ¢ = 6m.
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Figure 17a. Contours of the amplitude of Go,l' the fundamental oscilla-

tion. Contours from 0.0 to 0.96 with an interval of 0.06.
The body is an ellipse with a/b =5, and ¢ = n/4,
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Figure 17b. Contours of the phase, in degrees, of Go 1 the fundamental
9

oscillation. Contours from -11.2° to 0° with an interval of
0.7°. The body is an ellipse with a/b = 5, and o = w/4.
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Figure 18a. Contours of the amplitude of Go,l’ the fundamental oscilla-

tion. Contours from 0.0 to 0.96 with an interval of 0.06. The
body is an ellipse with a/b = 5, and o = m.
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Figure 18b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from -28.0° to 2.0° with an interval of
2.0°. The body is an ellipse with a/b = 5, and o = 5.




99

0

T

HIHIHIHIlﬂIHIH]HlHIquHIHIHIHIHH

'HHH

RERRFARRRARRVARARE IR TTITINJTTTITTTTTIN PP PERE TR il l|l|v|1l

NN

AUIUhHIHHHIUHHUI

] HNIIHHIHhIHH|HH

N’M
I I|I /le 11 IL //’ﬂfﬂrﬁﬁﬂ#"

240

/

AENEIRERNE A NRE RN lIIlJIlIIlIIIIIIIII|IIIIIIII]|IIIIIIII

Figure 19a. Contours of the amplitude of Go 1 the fundamental oscilla-
1]

tion. Contours from 0.0 to 0.96 with an interval of 0.06. The
body is an ellipse with a/b = 5, and ¢ = 3m,
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Figure 19b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from —38.0° to 4.0° with an interval of
2.0°. The body is an ellipse with a/b = 5, and o = 3m.
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Figure 20a. Contours of the amplitude of Go 1» the fundamental oscilla-
H]

tion. Contours from 0.0 to 0.96 with an interval of 0.06. The
body is an ellipse with a/b = 5, and o = 6m.
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Figure 20b. Contours of the phase, in degrees, of Go 1 the fundamental
’

oscillation. Contours from =-40.0° to 2.0° with an interval of
2.0°. The body is an ellipse with a/b = 5, and o = 6m.
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Figure 2la. Contours of the amplitude of ao,l' the fundamental oscilla-

tion. Contours from 0.0 to 0v85-with an interval of 0.05. The
body is an ellipse with a/b = 10, and ¢ = n/4.
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Figure 21b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from =11.2° to 0.7° with an interval of:
0.7°. The body is an ellipse with a/b = 10, and o = w/4.
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Figure 22a. Contours of the amplitude of Go 1 the fundamental oscilla-
H

tion. Contours from 0.0 to 0.90 with an interval of 0.05. The
body is an ellipse with a/b = 10, and o = m.
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Figure 22b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from ~28.0° to 2.0° with an interval of
2.0°. The body is an ellipse with a/b = 10, and o = .
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Figure 23a. Contours of the amplitude of ﬁo 1> the fundamental oscilla-
’

tion. Contours from 0.0 to 0.90 with an interval of 0.05. The
body is an ellipse with a/b = 10, and ¢ = 3m.
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Figure 23b. Contours of the phase, in degrees, Go 1» the fundamental
»

oscillation. Contours from -36.0° to 4.0° with an interval of
2.0°. The body is an ellipse with a/b = 10, and o = 3r.
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Figure 24a. Contours of the amplitude of Go 1» the fundamental oscilla-
’

tion. Contours from 0.0 to 0.90 with an interval of 0.05. The
body is an ellipse with a/b = 10, and o = 6.
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Figure 24b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from -40.0° to 2.0° with an interval of
2.0°. The body is an ellipse with a/b = 10, and o = 6m.
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Figure 25a. Contours of the amplitude of Go,l’ the fundamental oscilla-

tion. Contours from 0.0 to 0.80 with an interval of 0.05. The
body is an ellipse with a/b = 25, and o = w/4.
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Figure 25b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from -12.0° to 0.0° with an interval of
0.8°. The body is an ellipse with a/b = 25, and ¢ = /4.
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Figure 26a. Contours of the amplitude of Go 1 the fundamental oscilla-
’

tion. Contours from 0.0 to 0.85 with an interval of 0.05. The
body is an ellipse with a/b = 25, and o = 7.
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Figure 26b. Contours of the phase, in degrees, of Go 1 the fundamental
H]

oscillation. Contours from -28.0° to 2.0° with dan interval of
2,0°. The body is an ellipse with a/b = 25, and o = 7.
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Figure 27a. Contours of the amplitude of Go 1» the fundamental oscilla-
?

tion. Contours from 0.0 to 0.85 with an interval of 0.05. The
body is an ellipse with a/b = 25, and o =3m.
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Figure 27b. Contours of the phase, in degrees, of Go,l’ the fundamental

oscillation. Contours from ~36.0° to 4.0° with an interval of
2.0°. The body is an ellipse with a/b = 25, and o = 3w.
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Figure 28a. Contours of the amplitude of Go,l’ the fundamental oscilla-

tion. Contours from 0.0 to 0.80 with an interval of 0.05. The
body is an ellipse with a/b = 25, and o = 67.
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Figure 28b. Contours of the phase, in degrees, of GO 1> the fundamental
’

oscillation. Contours from -38.0° to 2.0° with an interval of
2.0° The body is an ellipse with a/b = 25, and ¢ = 6.
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Figure 29a. Contours of the amplitude of Go g» the first harmonic of the

free stream oscillation. Contours from 0.0 te 4.4 x 10~2 with
an interval of 2.0 X 10~°. The labels are scaled by 10*. The
body is an ellipse with a/b =5, and 6 = 7/4.
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Figure 29b. Contours of the phase, in degrees, of Go,Z’ the first

harmonic of the free stream oscillation. Contours from
-200.0° to 140.0° with dn interval of 20.0°. The body 1s an
ellipse with a/b = 5, and o = w/4.
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Figure 30a. Contours of the amplitude of Go 29 the first harmonic of the
H

CHETTTEENTTERT T

free stream oscillation. Contours from 0.0 to 2.0 x 1072 with
an interval of 1.0 x 1073, The labels are scaled by 10%. The
body is an ellipse with a/b = 5, and 0 = ™.



68

{

IHIPHIHHIﬂHiHHi“IﬂHlﬂﬂlﬂﬂ

ﬂﬂTHﬂﬂlbyHIHHHIH”HIHHIH

T

PTTTT I TITT T IO T T T T T I T T T T ITTTTITITTITTT

@ o g -
[N llLlllll !llfﬁl'llll EENE jllJl ARSI l[lllllll SNEREARARN NN NN NNY

v r11 llll}ﬂl} PETTTTT

\J:

hUIHHIHHlP

4
f

LI

———T

1
4
1
[}
¢
1
1
t
1
1
[
]
¢
'
1
1
1
¢
1
1
’
4
!
4
4
7
AT

-~

Figure 30b.

Contours of the phase, in degrees, of Go 2 the first
H]

harmonic of the free stream oscillation. Contours from
=240.0° to 100.0° with an interval of 20.0°. The body is an
ellipse with a/b = 5, and o = =,
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Figure 3la.

Contours of the amplitude of 80,2’ the first harmonic of the

free stream oscillation. Contours from 0.0 to 4.6 x 10-3 with
an interval of 2.0 % 10-*. The labels are scaled by 10°. The
body is an ellipse with a/b =5, and 0 = 67.
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Figure 31b. Contours of the phase, in degrees, of Go,Z’ the first

harmonic of the free stream oscillation. Contours from

-260.0° to 80.0° with an interval of 20.0°. The body is an
ellipse with a/b = 5, and o = 37
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Figure 32a.

Contours of the amplitude of ao,Z’ the first harmonic of the

free stream oscillation. Contours from 0.0 to 4.6 x 103 with
and interval of 2.0 x 10™%. The labels are scaled by 105, The
body is an ellipse with a/b = 5, and o = 6.
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Figure 32b. Contours of the phase, in degrees, of 30,2’ the first

harmonic of the free stream oscillation. Contours from
-280.0° to 60.0° with an interval of 20.0°. The body is an

ellipse with a/b = 5, and o = 6m.
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Figure 33a. Contours of the amplitude of Go 2 the first harmonic of the
]

free stream oscillation. Contours from 0.0 to 4,0 x 1072 with
an interval of 2.0 x 1073, The labels are scaled by 10%. The
body is an ellipse with a/b = 10, and o = n/b.
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Figure 33b. Contours of the phase, in degrees, of Go,Z’ the first
harmonic of the free stream oscillation. Contours from
-200.0° to 140.0° with an interval of 20.0°. The body is an
ellipse with a/b = 10, and o = w/4.
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Figure 34a.

Contours of the amplitude of Go 29 the first harmonic of the
’

free stream oscillation. Contours from 0.0 to 1.8 X 102
with an interval of 1.0 x 10~3. The labels are scaled by 10%.

The body is an ellipse with a/b = 10, and o = .
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Figure 34b. Contours of the phase, in degrees, of 1 the first harmonic

0,2’
of the free stream oscillation. Contours from -240.0° to 100.0°
with an interval of 20.0°. The body is an ellipse with a/b = 10,
and 0 =T,



86

H

RRRERRR

HlllIIIIIIHIHIIIHIIHIHIIIHHl]llﬂTﬂllHlﬂHquIHIIHH HI‘IIHIIIIIIIHIIH

HENENRE

'mllﬂlqllﬂllﬂl'HIITIHTHWIIIHI'IIITIIHI]'ﬂﬂTIIIT RRRERRE

PN TETEETIRLEntd

llllHlHlHlllHlllﬁNJH {1

bl

NENEENEN EENERNNEENERNNE IlIlIIILlllllIIL[IIIIILLII]JIIIIIII

Figure 35a. Contours of the amplitude of Go 2 the first harmonic of the
’

free stream oscillation. Contours from 0.0 to 7.2 x 1073 with
an interval of 4.0 x 10~%*. The labels are scaled by 105, The
body is 2n ellipnse with a/b = 10, and o = 3m.
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Figure 35b. Contours of the phase, in degrees, of 1 the first harmonic

0,2’
of thé free stream oscillation. Contours,from -260.0° to 80.0°
with an interval of 20.0°. The body is an ellipse with a/b = 10,
and ¢ = 3w,
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Figure 36a.

Contours of the amplitude of Go X the first harmonic of the
2

free stream oscillation. Contours from 0.0 to 4.0 x 10-3 with
an interval of 2.0 X 10~%. The labels are scaled by 10°. The
body is an ellipse with a/b = 10, and ¢ = 6%.
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Figure 36b. Contours of the phase, in degrees, of Go 2 the first harmonic
H

of the free stream oscillation. Contours from -280.0° to 60.0°
with an interval of 20.0°. The body is an ellipse with a/b = 10,
and 0 = 6w,



¢OT

i1

ElIHHﬂHHHH]llﬂﬂll!l”ﬂlHlIlllHHIlHHI]HHHl]lﬂllﬂlﬂllll!lﬂlIIIHIIHIHHHI

T T T T T T T T T Ty T e T e e e v e e e e ey v enai

1N

ERERNRERIERARRARE LlllllllLlllll HRE wanannRNRRRRRNRNRNENNNNNNNNE:

Figure 37a.

Contours of the amplitude of Go 25 the first harmonic of the
9

free stream oscillation. Contours from 0.0 to 3.6 x 1072 with
an interval of 2.0 x 10~3. The labels are scaled by 10%. The
body is an ellipse with a/b = 25, and o = /b
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Figure 37b. Contours of the phase, in degrees, of u

of the free stream oscillation.
with an interval of 20.0°.

and 0 = T /4,

0,2’

the first harmonic

Contours from -200.0° to 140.0°
The body is an ellipse with a/b = 25,
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Figure 38a.

Contours of the amplitude of Go 9> the first harmonic of the
-

free stream oscillation. Contours from 0.0 to 1.6 x 10”2 with
an interval of 1.0 x 1073, The labels are scaled by 10%,

body is an ellipse with a/b = 25, and ¢ = m.
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Contours of the phase, in degrees, of Go 99 the first harmonic
b

of the free stream oscillation. Coatours from ~240.0° to 100.0°
with an interval of 20.0°. The body is an ellipse with a/b = 25,
and 0 =.7,
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Figure 39a.

Contours of the amplitude of Go 2, the first harmonic of the
’

free stream oscillation. Contours from 0.0 to 6.4 x 10~3 with
an interval of 4.0' x 10™%, The labels are scaled by 105. The
body is an ellipse with a/b = 25, and o = 3w.
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Figure 39b. Contours of the phase of Go 2» the first harmonic of the free
’

stream oscillation. Contours from -260.0° to 60.0° with an
interval of 20.0°. The body is an ellipse with a/b = 25, and
o= 3m.
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Figure 40a. Contours of the amplitude of Go 2» the first harmonic of the
’

free stream oscillation. Contours from 0.0 to 3.4 x 1073 with
an interval of 2.0 x 10™%. The labels are scaled by 105. The
body is an ellipse with a/b = 25, and o = 6m.
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Figure 40b. Contours of the phase, in degrees, of ﬁo ,» the first harmonic
bl

of -the free stream oscillation. Contours from —-280.0° to 60.0°
with an interval of 20.0°. The body is an ellipse with a/b = 25,
and 0 = 6T,
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Figure 41. Contours of the amplitude of u the fundamental oscilla-

0,1’
tion of the flow past the parabola with o
from 0.0 to 0.22 with an interval of 0.01.

m/16. Contours
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Figure 42. Contours of the second order steady flow, Uy o past the

parabola with ¢ = n/16. Contours from-1l.4 x 10-3 to 1.05. x
10-%2 with an interval of 7.0 X 10-*. The labels are scaled by

o4
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Figure 43.

parabola with o = w/4.

Contours of the second order steady flow, “2 o Past the

Contours from -3.6 x 10”3 to 6.6 x 1073

with an interval of 6.0 x 10~%. The labels are scaled by 105,
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Figure 44, Contours of the second order steady flow, GZ,o’ past the
- parabola with o = 3n/4. Contours from =3.0 x 1073 to 2.4 x
10;3 with an interval of 3.0 x 107™%. The labels are scaled by
10°.
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Figure 45. Contours of the second order steady flow, GZ o> Past the
]

parabola with ¢ = 3n/2. Contours from -2.0 x 1073 to 1.2 x
10;'3 with an interval of 2.0 x 10~%. The labels are scaled by
10°.
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Figure 46a. Contours of the amplitude of Go,l’ the fundamental oscilla-

tion of the flow past the parabola with o = n/16. Contours
from 0.0 to 0.22 with an interval of 0.01.
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Figure A46b.

Contours of the phase, in degrees, of Go 1 the fundamental
1

ogcillation of the flow past the parabola with g
from —8.5° to 0.0° with an interval of 0.5°.

w/16.

Contours
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Figure 47a. Contours of the amplitude of Go,l’ the fundamental oscilla-

tion of the flow past the parabola with ¢ = w/4. Contours from
0.0 to 0.23 with an interval of 0.0l.



811

H

1l

=

lﬂﬂlHlHlHIHIHIHIHIHIHIWIHIHIHIHIHIHI“HIHIH[NIIH

REEERRAREARMAR AR AR AR RN R AR RN R

EHATEITRN

[UIUUIHUJH[HA

4 ! RS W REIIYIN..
". ¢ ,(I,if )
1

nmlu,ulunul_nln||||LLILUuu’l||ma|:’|111:1,'.1,1'115'&'4.:';'4"

L]

SENENERERANNNEERN

Figure 47b. Contours of the phase, in degrees, of Go 1’ the fundamental
3

oscillation of the flow past the parabola with 0 = m/4. Contours
from -24.0° to 1.0° with an interval of 1.0°.
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tion of the flow past the parabola with ¢ = 3n/4. Contours
from 0.0 to 0.22 with an interval of 0.0l.
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Figure 48a. Contours of the amplitude of u
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Figure 48b. Contours of the phase, in degrees, of GO 1 the fundamental
3

oscillation of the flow past the parabola with 0 = 3m/4. Contours
from -34.0° to 2.0° with an interval of 2.0°........ccovuvrnnennnn
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Figure 49a. Contours of the amplitude of u, ;, the fundamental oscilla-
?

tion of the flow past the parabola with o = 3n/2. Contours
from 0.0 to 0.22 with an interval of 0.0l.
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Figure 49b. Contours of the phase, in degrees, of a the fundamental

o,1’
oscillation of the flow past the parabola with ¢ = 37/2. Contours
from -38.0° to 2.0° with an interval of 2.0°.



XA

THTTHTIT

PIHTHIHIHIHIHIHIHIHHIHIHIHIHIHIHIHIHIHHIHIHIHIHHTHI

T T T T I T T T T T R T i L AT T FvT IIIIIIIIIITIE

-

RN RN RN R NN RN RN SRR (NN AN IHHILLIJUHHH

Figure 50a.

Contours of the amplitude of u, ,, the first harmonic of the
b4

free stream oscillation of the flow past the parabola with
o = 7/16. Contours from 0.0 to 9.6 x 1073 with an interval of
6.0 x 10 ~4. The labels are scaled by 10°.
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Figure 50b.

Contours of the phase, in degrees, of Go 2 of the first harmonic
’

of the free stream oscillation of the flow past the parabola with
6 =m/16, contours from -260.0° to 140.0° with an interval of
20.0°.
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free stream oscillation of the flow past the parabola with
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2.0 x 107™*. The labels are scaled by 105.’
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Figure 51b. Contours of the phase, in degrees, of GO 2 of the first harmonic
3

of the free stream oscillation of the flow past the parabo%a
with o = m/4, contours from to -240.0° to 100.0° with an interval

of 20.0°.
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Figure 52a. Contours of the amplitude of Go,Z’ the first harmonic of the

free stream oscillation of the flow past the parabola with
¢ = 31/4. Contours from 0.0 to 1.8 x 1073 with an interval of

1.0 x 10™. The labels are scaled by 10%.
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Figure 52b.

Contours of the phase, in degrees, of Go 99
2

of the first harmonic

of the free stream oscillation of the flow past the parabola

with o
20.0°

= 3n /4,

contours from -200.0°

to 80.0° with an interval of
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Figure 53a. Contours of the amplitude of Go s the first harmonic of the

free stream oscillation of the flow past the parabola with
6 = 3m/2. Contours from 0.0 to 9.6 x 10-* with an interval of

6.0 x 107°. The labels are scaled by 10° .
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Figure 54. Cross-section of the nose of the body used in the experiment of

Kachanov, Kozlov, and Levchenko (1978). One inch on the figure
is equal to 1 mm on the body; see the scale on the figure.
This figure shows the body from the nose to a distance of 5mm
back. The dashed line in the figure is the line y = o for both

the upper and lower ellipses. The upper surface in this figure
is that above which the measurements were made.
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Figure 55. Experimental results of Kachanov, Kozlov, and Levchenko (1978).

Contours of ﬁo o (in the notation of this paper) are shown.
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Contours are labeled with the speed in m /sec and the dashed
curve labeled § is the position of the top of the boundary
layer. Distances are in millimeters.



-

e

b=

APPENDIX B

OSCILLATING STAGNATION POINT FLOW

Chester E. Grosch
Department of Oceanography

01d Dominion University, Norfolk, Va. 23508

and

Harold Salwen
Department of Physics and Engineering Physics

Stevens Institute of Technology, Hoboken, N.J. 07030

133






I
W,

Gel

1.0
0.8 -
0.6 —
0.4

002_

=0,2 —
~0.4
-006—

"0.8-

-1.0-1

Figure 1,

[
. ——
o
b —
o
-

|
’4.0 5.0

The steady and secondary streaming flow components, f£! o and
fé o+ @as a function of n, the dimensionless distance’from the
H

boundary, The Strouhal number, o = 7/4, The solid curves are

the results of numerical integrations and the dashed curve is the

low frequency approximation for f; .. )
bl



9¢1

Figure

1.0 -1
008 -
016 -

0-14' -

L )'/,‘)":\‘F |
| i 27

£o,1

,/ 3.0 LP.O 500

\

\\n ”/ fé'l x lo
-0,k -
-0.6 -
-0.8 -
-1,0 —
2. The 0(e), f,,, and g;,, and 0(ed), £5,1 and g5 1,

amplitudes of the fundamental component of the oscillating flow
as functions of n, the dimensionless distance from the bound-
ary. The Strouhal number, o = w/4. The solid curves are the
results of numerical integrations and the dashed curves are the
low frequency approximations for fé 1 and gé 1+ The low fre-
quency approximation to 3,1, is sd close to the result of the

numerical integration that the two curves are virtually indistin-
guishable on this figure.



’_.';’",J

LET

1.0 "'1
0.8 —
006 i

0.“ -

1.0 = L,o 5,0

The 0(e?) amplitudes of the first harmonic of the oscillating
flow as functions of n, the dimensionless distance from the
boundary. The Strouhal number, o = 7/4., The solid curves are
the results of numerical integrations and the dashed curve is the
low frequency approximation to 5,2.



8¢1

1.0 -

008 hma

00’4 -

002 b

\ 1.0 / 3.0 L".O 500
"'002 T \
\ / 8,3 X 50
-0.’4 - \ /
\ /
\ /
"0.6 - \\_—’
\- 6’3 x 50 ( low frequency approximation )
-008 -
-100 -

Figure 4. The 0(e3) amplitudes of the second harmonic of the oscillating
flow as functions of n, the dimensionless distance from the
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low frequency approximation to fé’3.
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the boundary. The Strouhal number, o = 8m, The solid curves
are the results of numerical integrations and the dashed curves
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The 0(e2) amplitudes of the first harmonic of the oscillating
flow as a function of n, the dimensionless distance from the

boundary., The Strouhal number, o = 87, The solid curves are

the results of numerical integration and the dashed curves are

the high frequency approximations,
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The 0(e3) amplitudes of the fundamental component of the
oscillating flow as a function of n, the dimensionless distance
from the boundary. The Strouhal number, o = 8w, The solid
curves are the results of numerical integrations and the dashed
curves are the high frequency approximations.
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Figure

The 0(e3) amplitudes of the second harmonic of the oscillating
flow as a function of n, the dimensionless distance from the
boundary. The Strouhal number, o = 8w, The solid curves are
the results of numerical integrations and the dashed curves are
the high frequency approximations.
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ABSTRACT

A solution of the Navier-Stokes equations is given for an incompressi-
ble stagnation point flow whose magnitude oscillates in time about a com
stant, nonzero, value (an unsteady Hiemenz flow). Analytic approximations
to the solution in the low and high frequency limits are given and compared
to the results of numerical integrations. The application of these results

to one aspect of the boundary layer receptivity problem is also discussed.
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1. INTRODUCTION

In this appendix we give a solution to the Navier-Stokes equations for
an incompressible stagnation point flow whose magnitude oscillates in time
about a constant, nonzero, value. Apart from the intrinsic interest of this
problem, its solution is the first step in the solution of one aspect of the
boundary layer receptivity problem, that is, the determination of the magni-
tude and form of the disturbance introduced into the boundary layer on a
body by a perturbation in the free stream. The solution of this problem
would permit the calculation of the initial amplitudes of the Tollmien-
Schlichting eigenmodes and continuum eigenfunctions in the boundary layer
and give a rational foundation to transition prediction methods.

We have recently given the solution to the boundary layer receptivity
problem within the context of incompressible, linear stability theory for a
parallel shear flow (Salwen, Kelly, and Grosch, 1980; Grosch & Salwen, 1980;
Salwen and Grosch, 1981). There is, however, one aspect of the boundary
layer receptivity problem to which our parallel flow solution is clearly not
applicable. 1If we consider the flow near the forward stagnation point of a
body, a linearized parallel flow theory cannot be valid because the flow is

intrinsically nonlinear and nonparallel. Although we may be able to use the

boundary layer equations away from the stagnation point, the full Navier
Stokes equations must be used in the immediate vicinity of the stagnation
point. Once a solution of the Navier-Stokes equations for the perturbed
stagnation point flow has been found, it is possible to extend this solution

away from the stagnation point and around the nose of the body. This is, in

fact, what is normally done for the steady flow past an object. The Blasius
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series (Schlichting, 1979, pp. 168ff) is the extension around the nose of a
blunt body of the Hiemenz solution (Schlichting, 1979, pp. 95ff) to the
Navier-Stokes equations near a stagnation point. In section 6, we discuss
the analogous extension for our oscillating flow solution.

We were stimulated to do this work by the papers of Glauert (1956) and
Stuart (1966). There are a number of other relevant studies in this area
including those of Lighthill (1954), Rott (1956), Lin (1956), Carrier and
DiPrima (1957), Gibson (1957), Watson (1959), and Sarma (1964). Riley
(1975) and Schlichting (1979, chapter 15) give comprehensive reviews of
recent work in unsteady boundary layer theory. Lighthill (1978) has
recently reviewed the current understanding of the phenomenon of acoustic
streaming; 1i.e., the generation of a steady flow by the Reynold's stress

due to an oscillating flow.

2. EQUATIONS AND BOUNDARY CONDITIONS

We consider the flow in the neighborhood of a stagnation point at
(0,0) on'a plane wall, with x the coordinate along the wall and y the
coordinate perpendicular to the wall. We seek the solution (u(x,y,t),
v(x,y,t)) of the two-dimensional Navier-Stokes equations which corresponds

to the potential flow

(o]
Il

(on/Q)(l + € cos Wt) (D

<
L]

- (on/l)(l + € cos Wt) (2)
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in the far field. Here, U and V are the x- and y-components of velocity

of the potential flow, Uo the velocity scale, £ the length scale, €

the dimensionless amplitude of the oscillation, and ®w the frequency of

oscillation. Defining a stream function ¥(x,y,t) by

9 ]
u = 3%* v = - v (2a,b)

and substituting into the incompressible Navier-Stokes equations we find, as

usual, that ¢ 1is the solution of

ay 3y

3 9 d 20 = vo2 (V2
Getayox~ Tx oy TV = VR, (3)

with Vv the kinematic viscosity and

N
Q

N

N

V = — + E__., (4)

We define dimensionless variables

E =x/4, n = (y/l)/Ro, T = Uotll, (5a,b,c)

a Reynolds number,

R =028/ (6a)
[o] [o]
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and a Strouhal number

c =wl/U . (6b)
[s]

The use of separate velocity and length scales, Uo and £, while
correct, is somewhat arbitrary in that they appear only in the combination
Uoﬂr in the potential flow. The scales which are intrinsic to this problem
are the time scale of the base flow, To = 2/Uo, the frequency, w®, and
the kinematic viscosity, V. We can define velocity and length scales in
terms of To and V, thereby setting the Reynolds number equal to unity.
In any case, the dimensionless parameters which appear in the equations and
boundary conditions are the oscillation amplitude, €, and the Strouhal
number, ¢, and the results will be the same. We have chosen to use
independent velocity and length scales, Uo and £, because we intend to
use the solution presented here as the basis for constructing a solution to
the problem of an oscillating flow past a blunt object with length scale £.

If we set, in analogy with the Hiemenz solution (Schlichting, 1979, pp.

95ff),

v = (UANR ) E F(n,T), (7)
(o] o]

then equation (3) reduces to

2 2 2 3
3 [¥E , A5 p¥E_3F _, @)

on  3Ton on an2_ an3
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which may be integrated to yield

32 9F .2 32 53
F oo CEy _plE_0F g0, )
31on an am2  an3

Because the left-hand side of equation (9) is independent of &, it is
clear that the "constant of integration", G, only depends on the
dimensionless time, T. 1In order that the x and t dependence of the

pressure in the far field agree with that of the potential flow, we must

have

(uo/z)2 G = E.EH.+ E.EH.= (Uo/z)(—em sin wT) + (Uo/l)2

x 9N X X

x (1 +€ coswt)2. (10)

Therefore, F(n,T) is the solution of

2 2 32 33
7 F +(§f_) —F___F.—__F=1+ €(2 cos 0T - 0 sin oT)
379 an an2  ond
| )
+ € (1L + cos 20T) (11)

with the boundary conditions

F(0,T) = 0, (12a)

9F
(a—n—)n=o = 0, (12b)
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%%-+ 1l + cos OT as N + ® (12¢)

3. METHOD OF SOLUTION

To solve equation (11), we will expand F(n,T) in a Fourier series in
the dimensionless time, 7t. The coefficients of the expansion are functions
of n and the parameter € and each of these will be expanded in a power

series in €, It is easy to see, from the form of (11), that the T-

independent term in the Fourier series contains only even powers of

E.
Therefore, we look for a solution of the form
T o 2 T _2mtk
F(n,t) = } (&£, () + ] e “[£, . (n) cos kot
o 2m,o0 e 2m,k
m=0 k=1
+ g2m,k(n) sin kot]}. (13)

To find the equations obeyed by the f2m,k and g2m,k we substitute

(13) into (11), collect the coefficients of like terms in the Fourier

series, and set the coefficients of the successive powers of ¢

equal to
zero. We find, first, that fo o is the solution of
]
d3f d2f af 2
9:0 + £ 222 - (—222) +1=0 (14)
dn3 °,0 dn2 dn

with
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= f! = ! o
fo,o(O) fo,o(O) 0, fo,o + 1 as n > o, (15a,b,c)

As was expected , fo , the T-independent, €-independent term in the
H]

series, is the Hiemenz solution for the steady stagnation point flow.

Next we define the operator L by

2
__d3+foo_.__d-2fc')oi‘_+fgo, (16)
dn3 3 dnz 3 dn L]

L

with primes denoting differentiation with respect to n. Then it can be

shown that the equations and boundary conditions for the {me,k} and
{me,k}
are, for k 2 1,
Lk ™ % 8 omk ~ Pomi’
ngm’k + ko f'zm,k = sz,k, (17b)
f2m,k(0) = me,k(O) = f'2m,k(0) = gl2m,k(0) = 0, (17¢)
f'2m,k-+ Gm,o k,1’ g'Zm,k >0 as 0>, (174)
and, for m > o and k = 0,
L f = R s (18a)
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= ' = 18b
me,o(O) £ 2m,o(0) 0, ( )
f! + 0 as N+ >, (18¢c)

2m,o0
i i i f th
The {P2m,k}’ {QZm,k}’ are linear combinations of products o e
{f }, {g } and their derivatives, where s < k and 0<r <m or
2r,s 2r,s

s =k and r < m, and are given in Section 7. Therefore, these equations
can be solved sequentially. The equations can be integrated numerically
quite easily, although care must be taken to control roundoff errors. The

results of these integrations are given and discussed in Section 5.

4. LOW AND HIGH FREQUENCY APPROXIMATIONS

4.1 The Low Frequency Limit
As 0 * 0, it is expected that the solution will approach a quasi-
steady solution. It is straightforward to show that the quasi-steady

solution,

F(n,t) = (1 + € cos OT)I/Zfo 0([1 + € cos GT]I/ZH), (19)

3>

satisfies equation (l1) and the boundary conditions (12) to 0(o).
It is also easy to show that this quasi-steady solution is consistent
with the expansion given in equation (13). If F, as given in (19), is

expanded in a Taylor series in €, we find that

L n
F= 3 (e cos oT) s (M)
n n
n=o 2 n!
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2mk S (n)

- -]
2 - e 9
=y (2- Gko) ) (i) __ "X cos koT, (20)
k=0 m=0 m!(m + k)!
with
sh)=f @), n=0
n 0,0
n-1 n-r-1
- B _ Y
=nnf(n)(n) + ) (D (2:1 5 - 2)! [n - r(r + 1)]nrf(r)(n),
0,0 - n-r-1 0,0
r=o 2 r!(n-1)! 2
n2>1, (21)
and
r
d £
gr) o _ 0,0 22)
0,0 an

Equating the coefficients of € in (21) to the corresponding

coefficients of € in (13) we find that, to order O,

1
f = S5 , (23a)
2m,0 24m(m!)2 2m

f = 1 S (23b)
2m,k  AmFZR=T vy 2m+k,

g2m,k =0 (23¢)
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Taking the o » 0 1limit in the differential equations (17) and (18), for

the {me } and {me } and substituting the low frequency approxima-
3

> K K
tions (23), it can be shown by induction, after some lengthy but straight-
forward calculations, that these approximations satisfy the differentional
equations to O0(c). Therefore, the quasi-steady solution is the same as the

expansion in the low frequency limit.
4.2 The High Frequency Limit

In the high frequency 1limit, O * ©, it would be natural to look for

approximate solutions for the {f } and {g } 1in the form of a power
2m 2m,k

oK
series expansion in o¢~l. However, it is clear from the form of the
differential equations, that this expansion would be nonmuniform because the
highest derivatives would be multiplied by the small parameter o~! and
thus would vanish as o0 > »,

We therefore rescale the equations, defining a new independent

variable, an inner variable,
z = (6/2)}2n = (w/2v)1/ 2y, (24)

with the length scale (2v/w)!/2, that of Stokes's second problem
(Schlichting, 1979; pg. 75 and Chapter 11). In this limit we assume that

there is an inner expansion of the form,

. 2
F=f¢f () + ) e ™
0,0 w1

o«
~

(-]

2mtk -~ .

+ Zo kzl € [f2m,k(2) cos koT + me,k(Z) sin kot (25)
m= =
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It is easy to see that the differential equations for the {fém k}
H

and {§2m,k} are just equations (17) and (18) with a transformation of

variables from n to z. It can be inferred from the form of the equations

2m+k-1/2)

that f are 0((2/0) in the high frequency limit.

2m,k 2™ 8aq k

We then solve these equations, retaining only the highest order terms in an

expansion in powers of (2/¢).

We find
fo,l(Z) = (2/0) [z + %-e Z (cos z - sin z) —-%], (26a)
§0 1(z) = (2/0)1/2 L% e 2 (cos z + sin z) —-%], (26b)

a Stokes shear layer flow caused by the 0(e) part of the far flow field.
In the high frequency limit it is decoupled from the 0( &%) steady outer
‘flow. This is, of course, a familiar result in time dependent boundary
layer theory and has been derived and discussed by Carrier and DiPrima
(1957), Stuart (1966), and Riley (1975), among others.

If we let ¢ and 60 be the boundary layer thickness of the

o1

steady flow and the Stokes shear layer flow, respectively, then, for

g >> 1,

§ /6 s 2 (2/0)1/2 <« 1, (27)
0,0

Next, we solve the equations for the 0(e?) oscillatory flow and find

that

158




';_g'-r'/“

Eo o(2) = (2/0)3/2{E[e‘/7 % (sin V7 z + cos VZ z) - 1]
? 16

+ é ze 2 sin z} (28a)

go 2 (z) = (2/0)3/2 {/——z_[e-rfz (sin Y2 z + cos ¥YZ z) - 1]
? 16
1 -2z
-z ze  cos z} (28b)

Again we have a Stokes shear layer, decoupled from the steady flow and, for
large o, confined to a thin layer imbedded within the steady boundary
layer.

Proceeding next to the O0(e?) steady streaming flow component, we find

that the most general solution which satisfies the boundary conditions at

z = o0, 1is

£ 0 = (2/0)3/2(1—) [13 - 6z - e'-2z - 4e 2 (3 cos z + 2 sin z)
°© 16

- 4ze % sin z] + D22, (29)

where D is an arbitrary constant. This secondary steady streaming flow is
identical to that found by Stuart (1966) using the boundary layer equations.

Stuart's small parameter, @, 1is the reciprocal of 0 and Stuart's expan

sion is in powers of a, while ours is in powers of (2/0). Therefore,
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fz o’ with D = 0, is equal to 1/2 of the Xg given by Stuart (see Stuart,
3

1966; eq. 2.11). Our solution and Stuart's satisfy the boundary conditions

at the wall but do not satisfy the outer boundary condition because

+-(§) (2/) +0 D0 as n > (30)

and does not vanish, as required by the far field boundary condition, for
any value of D. This is explained by the fact (pointed out by Stuart)
that -there is an outer boundary layer, thick compared to the Stokes layer

thickness, 60 1’ but thin compared to the scale of the body, within which
3

this secondary steady streaming flow decays to zero.

Since the 0 * ® 1imit is nomuniform and 2z 1is an inner variable,
all of the f's and g's are inner solutions and could be expected to
require matching to appropriate outer solutions. The functions go,l’

g s £ , and g , however, are also outer solutions and, unlike
o,1 0,2 0,2

, do not require matching.

Hh)

2,0
Outside of the Stokes layer, the interaction between the secondary

streaming flow, Eé o’ -and the oscillatory potential flow, %; L’ is
3 3

unimportant. In the case studied by Stuart, the dominant non-linear

interaction is that between fé o and itself. Since the velocity of this
b

flow at the top of the Stokes layer is O(UO/O), the corresponding Reynolds

number is Rs = (Uo/o)(Z/V) = RO/U. From this, Stuart concluded that the

thickness of the outer layer is 0(2Rs‘1/2) = 0(1R0’1/201/2), which is

larger than that of Stokes layer by a factor of the order of o.
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For the case under consideration here,. the situation is completely
changed by the existence of the large steady flow, f; o with boundary
3

layer thickness 6 = 0(gl/2 S, 1). The dominant non-linear interaction
L] 3

of f2 o in the outer layer is with fé oand, consequently, it falls off in a
3 s

distance of the order of 60 o (instead of gl/2 60 o). The appropriate
] 3

y/ 8

outer variable is therefore n 0.0°
3
-~

If we express fo 1 and §o 1 in terms of n, substitute them into
b 3

the differential equation for f2 o? and let o + o, it can be seen that the
3’

~

outer solution, f , 1s the solution of

2,0
2 3 2
WE, D= E—vg o L Hg =, (31)
»O dn3 0,0 dn2 o, dn O, s

with the outer boundary condition

£' + 0 as n > o (32)

2,0
Using the asymptotic expansion for f0 o
s
f ~n+ A, (33)
0,0

with A a constant, it can be shown that the general solution of (31) is

= '
Fy o= Co o oM * Cihy(n) + €, hy(m) (34)

where, as n »* o

© 2 _n2
h'y ~ (1 + BZ) [ e Y24y - pe~B7/2 (35)
B
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h'y~ 8 + 583, (36)
with
B =n + A. (37)
The outer boundary condition requires that C2 be set equal to zero.
This leaves three arbitrary constants, Co’ Cl’ and D, 1in the inner and

outer solutions so we can match the inner and outer solutions and their
first two derivatives. Matching the inner limit of the outer solution and

the outer limit of the inner solution shows that

c, =061y, ¢, =003%2), and D= 0(c7?), (38a,b,c)

The inner solution was obtained by expanding in powers of 0-1/2  and
retaining only the lowest order terms. Consistent use of this approximation

requires that we set C1 and D to zero and match the first derivative.

We find that

c = -3/(4B0). (39)

where B = f" (0). The composite solution for £ is
0,0 2,0

2z -

~ 1 -
£y o= (2/5)37/2 (1) [13- e - 4e ° (3 cos z + sin z)

162



- 4ze % sin z] - Y (n), (40)

4Bg ©°°

which satisfies the boundary conditions at 2z equal to zero as well as
z + ®, The thickness of the inner layer of the steady streaming flow is

60 1° while that of the outer layer 1is 60 o which 1is much larger than
3

§ for o » o,
o,1

We have also calculated the high frequency approximations for the

0(e3) functions, for f f

0,3’ go’3, 2,1 and g2,1' These are given 1n

Section 8, The components of the amplitude of the 0(e3) portion of the

second harmonic f0 3 and g, 3 are driven by the interaction of the 0(eg)
3

’
fundamental (f0 18, 1)and the 0(e2) first harmonic (f ). The

o,2’go,2
inner expansions for fo 3 and 8, 3° given in Section 8, are also outer
3 3

expansions.

This is not true for f2 1 and 89 19 the components of the amplitude
b ’

of the 0(e3) part of the fundamental. They are excited by the interaction

of (f ., g ,) with (f, ) as well as ) with ( ).
o,1 o,l

2,0 (fo,l’go,l f0,2’80,2

The inner expansion of the in-phase component, f2 1° satisfies the outer
3
boundary condition, but inner expansion for the out-of-phase component,

g s does not. The outer expansion for g, 1 is the same as that for
2,1 ?

f2 o The composite expansion for 89 1 is found in the same way as that
3 ’

for f2 o and is given in Section 8,
3
5. RESULTS

We have numerically integrated the differential equations for the f's

and g's with 2m + k € 3 over a wide range of values of o. Some typical
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results at a moderately low frequency, o =w/4, are shown in Figures
1 - 4, where the solid curves show the results of the numerical integrations
and the dashed curves are obtained from low frequency approximations for the
f's given in section 4.1. The g's are identically zero in the low fre-
quency approximation.

It can be seen from the results shown in these figures that at low
frequencies there is no Stokes layer; the boundary layer thickness of the
various components are generally equal to or greater than that of the steady

flow component, f; . The steady streaming component, fé o’ is quite

s O ’
small compared to the mean flow, even for € = 1.

At o = o the g's, the out-of-phase components, are identically
zero. At small, but nonmzero, frequencies the ‘low order (in €) in-phase
components, the f's are larger than the g's. As the order increases,
however, the magnitudes of the f's and g's tend to equalize and
decrease.

It is also apparent from an examination of Figures 1 - 4 that the low
frequency approximations are reasonably accurate even at 0 = T/4., In fact,

the difference between the numerical solution and the approximation for

f L is so small that it is not apparent in Figure 2. Taking into account
O,

the fact that the higher order terms, which have the largest deviations from
the low frequency approximations, have very small magnitudes, it is clear
that the low frequency approximations, equation (19), is reasonably accu-
rate, even for Strouhal numbers as large as /4.

Figures 5 - 9 show the f's and g's for 2m + k € 3 at a moderately
high Strouhal number, o = 87, as obtained from the numerical integrations
(solid curves) and the asymptotic approximations (dashed curves). The top

of the Stokes layer is at z = 4.6 and this corresponds to n = 6.5 ol/2,
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Therefore, the top of the Stokes layer is at n = 1.3 for o = 8w. The
secondary streaming flow (see Fig. 5) extends far beyond the Stokes layer.
The variation of the fundamental component (see Fig. 6) is confined to the
Stokes layer. The amplitude functions of the higher harmonics tend, like

fé o’ to extend beyond the Stokes layer because they are also driven by
3’

Reynolds stresses due to f
0,0

The secondary steady streaming flow, f is considerably smaller

]

2,0’
at high frequencies than at low frequencies. 1In addition, the nature of the
secondary flow changes as O increases; at a small o, the net secondary
flow is positive while, for large o, it is negative. As discussed by
Stuart (1963), it is known from experiments that this effect occurs in the
steady streaming flow generated by a circular cylinder oscillating along a
diameter.

. . . . oF
The tangential velocity component, u, is proportional to ET that

is to the {f!

- ;
2m, K g2m,k}' In Figure 10 we present some of the results of

the numerical integrations; a plot of the variation of max lfém k' and
b
max |g! | as functions of 0o. The maximum of f' is 1.0 for all ¢
2m, k o,
and the absolute maximum of fé 1 is about 1.069 at o =~ 17; the maxima of
3
é o and f; | are mnot plotted in Figure 10. We can conclude, from the
b 3
results shown in Figure 10, that the high frequency estimate, {|fém kl’
b
~-2m-k+ . .
|89 k11 = 0(o Zm-k 1), is quite good.
3

6. DISCUSSION

The applied far-field flow consist of a time-independent mean flow and

a fundamental with a coswt time-variation., Non—linear interactions result
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in the generation of components at all multiples of the fundamental fre-

quency and modifications of the mean flow and fundamental components,
though, at moderate €(< 1), the fundamental and first harmonic tend to
dominate.

At low frequencies, our results are well represented by a quasi-steady
approximation (19), which has the same form as the steady stagnation-point
flow except that the amplitude and scale vary with time. Somewhat surpris—
ingly, this approximation is quite good for a dimensionless frequency, 0,
as large as Tmw/4.

At high frequency, the viscous boundary layer corresponding to the
oscillating components is largely, but not completely, confined to a Stokes
layer of thickness (2/0)!/2 times that of the steady boundary layer. For
these large values of o0, the inner asymptotic approximations are solutions

of differential equations which are independent of f and are, there-
0,0

fore, decoupled from the mean flow. For a number of components, the inner
expansions are also the correct outer expansions; these components are,
therefore, totally decoupled from the mean flow to lowest order in o0 and
are, in fact, identical to the corresponding solutions found by Stuart

(1966) for a purely oscillatory flow past a body.

Not all of the components are decoupled from the mean flow in the high
frequency limit. The high frequency expansion is a non-uniform asymptotic
expansion and thus, for certain components, in particular the steady second

order flow, f'2 o’ an outer expansion, matched to the inner expansion, is
2

needed for a uniformly valid approximation. The results given in Section

4.2 show that such composite expansions can be found for ¢ >> 1; they
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satisfy, to lowest order in ¢, the differential equations and all of the
boundary conditions. We believe, although we have not carried out the cal-
culations, that this is also true for an expansion to any order in o. The
results of the numerical integrations, shown in Figures 5-9 are consistent
with this belief. We conclude that, both for this flow and for the oscilla
tory flow studied by Stuart (1966), there are second, and higher, order
steady streaming flow components that do not extend to infinity but are
confined to a layer adjacent to the solid boundary. This layer is much
thicker than the Stokes layer but much thinner than the length scale of the
body.

There are other aspects of Stuart's solution which can be compared with

ours. He used three parameters, «, B, and RS in his solution, which

are related to our Strouhal number, o, and Reynolds number, Rb’ by:
o =y /@) =o-t,
B +Vv/Wt?) = 1/(oR ),

R = Uz/(w\)) =R /o.
S o o

Stuart used the boundary layer equations and an expansion for a * o; we
have used the Navier-Stokes equations and, in addition to the numerical
solutions, an expansion for the high frequency limit, ¢ * ©, It is clear
that Stuart's expansion, and ours, are high frequency approximations.

Stuart assumed that B was small and RS large in order to justify the use

of the boundary layer equations. In the high frequency limit o + %, and,
with Ro fixed, «, B, and Rs are all small. We do not need to make

any assumptions concerning the magnitude of Ro or R.s because we used the
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Navier-Stokes equations. We can determine the f's and g's by numeri-
cally integrating the ordinary differential equations; however, the quasi-
steady solution for low frequencies and the high frequency expansion are
useful analytic approximations.

We have not attempted to determine the radius of convergence, in €,

of the series for F(n,T,e), equation (13). However, some observations can

—-2m-k+1/2

be made. We have found that f! and 8om. k2T 0(o ) for
b

2m,k
' '
2m,k"|g 2m,k

- 2m~-k+ +
Zm-k 1). Thus the series for u 1is 1in terms of (e/c)zm k,

large 0. Therefore, max {|f |}, the amplitude functions for
u, are 0(c
for large o0, and this suggests that it converges for ¢€/0 < 1 and

converges rapidly for € < 1. On the basis of the results presented in
figure (10) we conclude that the high frequency bound on max {lf'Zm,kl’

’g'Zm,kl} is valid at all frequencies and, therefore, that the series
converges rapidly for € <€ 1. Of course the convergence will be slower at
low frequencies but we have shown that, for o < m/4, the quasi-steady
solution is an accurate approximation.

In the introduction we suggested that the solution to the problem of
oscillating stagnation point flow was the first step in the solution of one
aspect of the boundary layer receptivity problem. A few years ago, Morkovin
(1978) reviewed the rather rudimentary state of knowledge of the dynamics of
boundary layer receptivity. He identified four general classes of free
stream disturbances which might generate Tollmien-Schlichting waves in the
boundary layer. These are: vorticity fluctuations, sound, entropy
disturbances, and unsteadiness in the mean flow. In the incompressible

limit, there can be only vorticity fluctuations and unsteadiness. Morkovin

argues, however, that a temporally oscillating incompressible flow is a
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reasonably accurate approximation for a sound wave impinging normally on the
nose of a body if the wavelength of the sound wave is much greater than the
radius of curvature of the nose.

The solution of the Navier-Stokes equations given here is the solution,
in the neighborhood of the stagnation point, of the receptivity problem for
a simple unsteady flow. 1In order to interpret this solution in terms of a
stability model it is necessary to extend it around the nose of the body
into a region where the flow is, at least, quasi-parallel. 1If we can assume
that the tangential component of the potential flow at the edge of the

boundary is of the form U = UOH(E) (1 + € cosot), with H(§) having a power

series expansion in &, the distance along the body from the stagnation
point, we can use an unsteady variant of the Blasius series to solve this
problem. For the first term we use the full two-dimensional Navier-Stokes
equations and the solution is that given here. For the subsequent terms, we
use the boundary layer equations. We have carried out this calculation
procedure up to and including the terms in gll  and we are now applying it
to bodies which are elliptic or parabolic cylinders. We hope to report the
results of these calculations at a later date.

This work was supported, in part, by grant NAG-1-96, from the National

Aeronautics and Space Administration.
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7. DERIVATION OF P2m,k AND Q2m,k MATRICES

The expressions for P2m,k’ Q2m,k’ and R2m,o in (17a), (17b), and (18a)

are simplified by use of the notation

M(£,g) = f'g - 2£'g' + fg". (7-1)

In terms of M,

k-1

+ (-8 2 [M(F ,f

=-1
P - 4 {86k1 + 28 1 o,r’ 0,k-r
r=1

ok k2

- > 7-2
M(go,r’go,k—r)]} for k >1, (7-2)

1 m—1 m k-1
P2m,k . Z-'a 2 M(f2(m—s),o’f23,o) - okl) 2 z
$=0 s=o r=1
X [M(fZS,r’fZ(m—s),k—r) - M(gZS,r’gZ(m—s), k-r)

m-1 m-1-s

2 Z .Z [M(EZS,k+m‘S‘S"fZS',m-s-s') * M(gZS,k+m—s—s"
S=0 8§ =0
> —-—
gZs,m—s—s')]} for m 21, k 21, (7-3)
1 k-1
[ P - - > -
Qp =7 1208, - (1 = 8, rzl MUE, 98, kr) for k 21, (7-4)
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m—-1 m k-1

- _1 -
Vm,x = "7 2 z M(fZ(m—s)’gZS,k) +(1-6,) ) 2
s=o s=o r=1

m-1 m-1l-s
x [M(fZS,r’gZ(m—s),k-r) + ] ) [M(fZS, ms-s'

s=o s'=o

X 82s' ,ktm-s-s'’ M(-f2$',k+m—s—s'’825',m—s--s')]

for m=1, k 2 1, (7-5)
and
1 m-1
R2m,o A 26 1 + 201 - Gml) szl M(f25,o’f2(m—s),o)
m-1 m-1l-s
* & ' C [M( 2s,m-s-s'"’ 23',m—s—s') * M(gZS,m--s—s',
s=o s'=o
>
x ng',m—s—s')] for m 1. (7-6)
Here, Gij is the Kronecker & symbol.
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8. HIGH FREQUENCY APPROXIMATIONS TO THE O0(e®) FUNCTIONS
The approximations to fo,3 and go,3 for o » » are:
/2 -z

" 5
£ 4(2) = (2/0) {lo-8&2+3(2+1)] +e  [(VvZ

2 2
—6+4z—4z)cosz+(6-/7—4z)sinz]

+ e—v’_2-z(4 + %72 - 8z) cosV2z - (4 + 2/2) sin fiz]

-V3(/2 + 1) e_/_Bz(cos Y3z - sin V3z) + (5/2 - 7)

x —é(f2_+ Dz [cos (/—2-'* 1) z - sin (2 + 1)2]}/128’ (8-1)

572 -
;@ = @) {[o- 872 +73 (VZ+1)] +e  [(VZ

2 2
—642)cosz+(v/7—6+l+z—4z)sinz]

+ e--’/_zz[(4 + 2/_2-) cos V2z + (4 + 272 - 82) sin /T'Zz]

e S

(cos Y3z + sin @z) + (5'/7“ 7)
x e—(/_z— * 1)Z[cos (V2 + 1)z + sin (V2 + 1)z]}/128. (8-2)
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The approximation to f2- 1 for o + » is:
3y

5/72 -
£, (@ = /) {(349-335/2)/1920 + & “[(60v2-213) /960

+ ((52/64) (z-1)/64) cos z + ( (93 + 15V2)/240-10z

x (z + 1)/64) sin z] + e-/?lz[ (7V2 - 2 + 4z) cos V32

- (W72 + 2) sinV/2z]/64 + (13/160)e—2z + e-.('/_z-*'l)Z

[(/2-5) cos(/Z - 1)z - (/2 + 5) sin (V2 - 1)z] /384

+e 2% cos z/320} .

The composite approximation to §2 1 for 0 + © 1is;
bl

572 -
g, ,(2) = 2/0) { - (1513 + 1252)/1920 + e %[ (558~ 45/7) /960

+ ((3z (6-2)/64) cos z + ((177 + 45V/32) /960 +

ﬁz[ (7V2 + 2) cos V22

x z(31 + 9z)/64) sin z] + e

+ (W2 - 2 + 4z) sin v/ 2z] /64 + e_zz[(13/80 + 2/16) ]
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+ e—(ﬁ * 1)z[ (5v32) cos(¥Y2 - 1)z~ (5 - ¥V2)

sin (/2 - 1)z] /384 +

X

2

+

(2/6) 3f' (n)/(8B),
0,0

3

with B=f" (0).
0,0

-3z
e .
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amplitudes of the fundamental component of the oscillating flow
as functions of n, the dimensionless distance from the bound-
ary. The Strouhal number, .0 = /4. The solid curves are the
results of numerical integrations and the dashed curves are the
low frequency approximations for fé  and gi . The low fre-
quency approximation to fa,l' is 80 close to the result of the

numerical integration that the two curves are virtually indistin-
guishable on this figure.
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The 0(e?) amplitudes of the first harmonic of the oscillating
flow as functions of n, the dimensionless distance from the
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the results of numerical integrations and the dashed curve is the
low frequency approximation to 6’2.
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The 0(e) amplitudes of the fundamental component of the oscil-
lating flow as a function of n, the dimensionless distance from
the boundary. The Strouhal number, o = 8w. The solid curves
are the results of numerical integrations and the dashed curves
are the high frequency approximations. The high frequency
approximation to f&,l is so close to the result of the numerical

integration that the two curves are virtually indistinguishable
on this figure.
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flow as a function of n, the dimensionless distance from the

boundary. The Strouhal number, o = 8n, The solid curves are
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The 0(e3) amplitudes of the fundamental component of the
oscillating flow as a function of n, the dimensionless distance
from the boundary. The Strouhal number, o = 8%, The solid
curves are the results of numerical integrations and the dashed
curves are the high frequency approximations.
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